

A Throttling Layer-7
Web Switch

Final Report

Written by:

James Furness

Supervised by:

Dr. Julie McCann

Second Marker:

Dr. Dan Chalmers

Project Homepage:

http://www.base6.com/mercury

A Throttling Layer-7 Web Switch James Furness

 Page 2

Abstract
The world-wide web has grown rapidly from a research tool in 1991 to a part of

everyday life for most people. In this same time the content available has evolved

from bland text pages with few images to rich multimedia, interactive and often

dynamically generated pages. An ever-growing strain is placed on popular

websites to handle increasing volumes of traffic and deliver pages quickly to users

with a constantly decreasing attention span.

The primary aim of this project is to produce a web switch, which enables a pool

of web servers to present themselves as a single virtual server. This web switch

supports throttling or downgrading of content under high load situations,

attempting to ensure that “everybody gets something” rather than “some people

get everything and some people get nothing”.

A Throttling Layer-7 Web Switch James Furness

 Page 3

Acknowledgements
I would like to thank my supervisor Julie McCann, my second marker Dan

Chalmers and Gawesh Jawaheer for their supervision and invaluable assistance

during the course of this project, providing encouragement, ideas and reference

sources.

I would also like to thank Tim Southerwood, Matt Johnson and Duncan White for

their willingness to discuss my ideas and provide guidance on kernel modification,

testing and other technical aspects of this project.

A Throttling Layer-7 Web Switch James Furness

 Page 4

A Throttling Layer-7 Web Switch James Furness

 Page 5

Contents
1 Introduction ..7

1.1 Motivation ... 7
1.2 Project Goals ... 8
1.3 Report Structure .. 8

2 Background ..11
2.1 Introduction .. 11
2.2 HTTP: The world-wide web.. 11

2.2.1 Protocol Overview... 11
2.2.2 HTTP 1.1 ... 12
2.2.3 CGI Scripts .. 13

2.3 Effects of High Demand... 13
2.3.1 Overall Demand ... 13
2.3.2 Flash Crowd Events and DoS Attacks .. 14

2.4 Coping with High Demand ... 14
2.4.1 Slowing Requests ... 15
2.4.2 Increasing Capacity .. 15
2.4.3 Increasing Processing Speed.. 23

2.5 Summary.. 23
3 Design Overview ..25

3.1 Introduction .. 25
3.2 Terminology .. 25
3.3 System Architecture ... 25
3.4 Routing Layer .. 26
3.5 Control Layer... 26

3.5.1 Control Layer Interface.. 27
3.5.2 Policy Engine.. 28
3.5.3 Virtual File System.. 29
3.5.4 Configuration Module .. 29
3.5.5 Summary .. 30

3.6 Initial Monitoring data and metadata .. 30
3.6.1 Monitoring data .. 31
3.6.2 Metadata ... 34

3.7 Standardising Response Times... 35
3.7.1 Introduction... 35
3.7.2 Implementation.. 35

3.8 Summary.. 37
4 Detailed Design ..39

4.1 Introduction .. 39
4.2 Implementation Tools and Techniques .. 39
4.3 Control Layer... 40

4.3.1 XML Configuration Format ... 40
4.3.2 Control Layer Interface (mercury.urimapper) 41
4.3.3 Policy Engine (mercury.logic) ... 43
4.3.4 Policy Engine System Monitors (mercury.monitors)....................... 45
4.3.5 Virtual File System (mercury.vfs) ... 45
4.3.6 Configuration Module (mercury.config).. 53
4.3.7 Debugging and logging (mercury.debug) 57
4.3.8 Initial Dispatching Algorithm .. 57

4.4 Routing Layer .. 60
4.4.1 TCP Hand-off ... 60
4.4.2 TCP Gateway ... 60

A Throttling Layer-7 Web Switch James Furness

 Page 6

4.4.3 Evaluation of Proxy Servers ... 61
4.5 Portability ... 64
4.6 Scalability and Resilience .. 64
4.7 Summary.. 66

5 Testing ..67
5.1 Introduction .. 67
5.2 Unit testing ... 67
5.3 Integration testing ... 67
5.4 Effectiveness testing... 67

5.4.1 Test setup ... 68
5.4.2 List of tests conducted .. 70

6 Evaluation...85
6.1 Introduction .. 85
6.2 Summary of Goals.. 85

7 Conclusion ...87
7.1.1 Limitations... 87
7.1.2 Extensions... 88
7.1.3 Summary of achievements... 88

8 Bibliography ...91

A Throttling Layer-7 Web Switch James Furness

 Page 7

1 Introduction

1.1 Motivation

“The overall increase in traffic on the World Wide Web is augmenting user-

perceived response times from popular Web sites […] System platforms that do

not replicate information content cannot provide the needed scalability to handle

large traffic volumes and to match rapid and dramatic changes in the number of

clients.” [1]

Since its birth in 1990, the world-wide web has shown phenomenal growth due to

its ideal suitability as a mechanism for the rapid dissemination of information. The

mass availability of information through the world-wide web has spearheaded the

growth of Internet access and this has in turn further encouraged the growth of

the world-wide web.

Figure 1 Growth of the World-Wide Web Aug 1995-Jun 2004 (Upper line

indicates hostnames, lower indicates unique hosts) [2]

In addition, Internet connections used by end users have increased dramatically

in speed from 9600bps modems that were the state of the art in 1990 to the

broadband services of today offering speeds of 2Mbps and above. Backbone

connections between Internet providers are similarly increasing in speed. Users

A Throttling Layer-7 Web Switch James Furness

 Page 8

are able to browse the world-wide web with increased data rates and reduced

latency.

These factors have placed a much greater importance on the ability of a popular

web site to handle large numbers of concurrent users whilst keeping user-

perceived response times within a limit acceptable to the user. This limit is

continually decreasing as Internet connection speeds increase.

Optimising web sites to handle these demands has been a target of research

since 1994 and many of the problems involved have been addressed, however a

great deal of research is still ongoing.

1.2 Project Goals
This project attempts to create a system facilitating a pool of web servers to

present themselves as a single virtual server with the following features:

• Throttling (Primary Goal): The system should attempt to maximise

availability and response times with the resources available to it by

downgrading pages to alternative versions requiring less resources when

under high demand. (E.g. text only pages instead of multimedia pages

when a large number of concurrent users are using the site)

• Load balancing: The system should balance the load of connections

between the servers in the pool, allowing scalability under load by

distributing requests amongst the pool.

• Heterogeneous pool: The system should allow the pool to be

heterogeneous, where a particular resource may be on some but not all of

the pool servers. It should also allow servers to join and leave the pool at

any time.

• Adaptable: The system should be as flexible as possible and provide a

framework to allow a variety of load balancing/throttling algorithms to be

used

1.3 Report Structure
Chapter 2 provides an overview of the technologies involved and the current

state of the art

Chapter 3 contains a high-level overview of the chosen design

Chapter 4 contains a detailed view of the chosen design

A Throttling Layer-7 Web Switch James Furness

 Page 9

Chapter 5 details the experimental testbed, data collection procedures and

testing carried out on the system

Chapter 6 evaluates the performance of the system

Chapter 7 summarises the achievements of the project, identifies limitations and

possible further work.

A Throttling Layer-7 Web Switch James Furness

 Page 10

A Throttling Layer-7 Web Switch James Furness

 Page 11

2 Background

2.1 Introduction

This chapter presents an overview of the key technologies, concepts and existing

research related to the project:

• Firstly an overview of HTTP is given, the underlying protocol driving the

world-wide web.

• Secondly the problems caused by high demand for a web site are

discussed.

• Finally an overview is presented of currently available techniques to

overcome the problems of high demand.

2.2 HTTP: The world-wide web
This section presents a brief overview of HTTP, the underlying protocol that drives

the world-wide web. Additionally some more advanced points relevant to this

project have been included.

HTTP stands for HyperText Transfer Protocol and is the network protocol used to

deliver files and data over the world-wide web. The first version was developed in

1990 at CERN by Tim Berners-Lee.

2.2.1 Protocol Overview

The standard method of addressing files is to use a Uniform Resource Locator

(URL) to identify a location on the server. This is a type of Uniform Resource

Indicator (URI). URIs are typically of the form service:parameters. URLs are

typically of the form http://host:port/path/file.html. Often the port is

omitted and defaults to the standard HTTP port, 80.

HTTP generally communicates over a TCP/IP socket connection and is

connectionless and stateless. It is based upon a request/response paradigm, and

in its most basic form consists of the following steps:

1. Client establishes a TCP connection to the server host and port given in

the URL

2. Send the HTTP Request to the server

A Throttling Layer-7 Web Switch James Furness

 Page 12

3. Receive the HTTP Response

4. Close the TCP connection

The HTTP Request consists of a request line specifying the operation (Most

commonly GET, HEAD or POST), requested path and protocol version. This is

followed by zero or more request headers specifying additional information and

then a blank line. In the case of a POST request the headers are followed data. A

typical request might look like this:

GET /test.txt HTTP/1.1

Host: www.doc.ic.ac.uk

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT)

The HTTP Response is structured similarly, with the first line specifying the

protocol version, a numeric status code and description. This is followed by

response headers, a blank line and then the content of the response. A typical

response might look like this:

HTTP/1.1 200 OK

Date: Fri, 20 Feb 2004 13:31:00 GMT

Server: Apache/1.2.0

Content-Type: text/plain

This is a test document.

Note that the numeric status code is machine-readable and the first digit

corresponds to the category of response (For example 2xx indicates a success)

2.2.2 HTTP 1.1

The initial version, HTTP 0.9 only supported raw data transfer, and rapidly

became a de-facto standard on the Internet. The first official version, HTTP 1.0

was defined by RFC 1945 in 1996 and added content type negotiation.

Several major problems existed in this version and in 1999 HTTP 1.1 was defined

by RFC 2616. Improvements include:

• Persistent connections: Most HTML pages reference other objects such

as images; under HTTP 1.0 a new connection is created for each object so

a page with N referenced objects requires N+1 connections. Setting up a

A Throttling Layer-7 Web Switch James Furness

 Page 13

new TCP/IP connection causes an unnecessary overhead, HTTP 1.1 uses

persistent connections which allow several requests to be sent over one

connection

• Hostname identification: A Host: header is added to all requests

allowing one IP address to be allocated to multiple domain names

• Proxy support: HTTP 1.1 adds additional headers to help proxies

determine how long to keep documents in their cache

• Byte ranges: The client can specify a byte range to be retrieved instead

of a whole document

• Compression: Compression of documents can be negotiated between

client and server

• Pipelining: Several requests can be sent on a persistent connection

without waiting for responses. The responses can then be sent together,

maximising packet sizes and increasing network efficiency.

Figure 2 Pipelining [3]

2.2.3 CGI Scripts

A CGI script is a program that runs on the web server and generates a dynamic

response to the client’s request. It interfaces with the web server via the

Common Gateway Interface (CGI) standard [11]

2.3 Effects of High Demand

2.3.1 Overall Demand

A popular website has a high average request rate since it is being accessed

simultaneously by many people. The web site must be able to endure a higher

request rate than the average in order to cope with peaks in demand. For a

typical website these peaks can be significantly higher than the average, since

A Throttling Layer-7 Web Switch James Furness

 Page 14

the majority of users for a site are often in the same time zone, and the request

rate is low during the night and high during the day.

2.3.2 Flash Crowd Events and DoS Attacks

These events cause a significant load to be suddenly and unexpectedly placed on

a web site.

A flash crowd event is caused by a huge number of users trying to load a website

simultaneously (For example the September 11th terrorist attacks which caused

several major news sites to be unavailable). A Denial of Service (DoS) attack is

caused by a user maliciously sending a large volume of requests to a website in

order to disrupt its service.

Figure 3 Traffic volume for a Flash Event (left) and a DoS attack (right) [20]

Both flash crowd events and DoS attacks cause degradation to the service, or

complete failure of the website.

2.4 Coping with High Demand
In order to better cope with the types of High Demand described above, a web

site essentially has three options:

• Slow the incoming request rate down

• Increase capacity in order to cope with the peak demand

• Increase the speed at which requests are processed

A Throttling Layer-7 Web Switch James Furness

 Page 15

2.4.1 Slowing Requests

In [22], the network early warning system (NEWS) is proposed. This relies upon

detecting the flash crowd event and then employs an adaptive rate limiting

technique to reduce the request rate to an acceptable value.

2.4.2 Increasing Capacity

This section describes currently available technologies to increase the capacity of

a web site in order to cope with higher demand. This section consists mainly of a

summary of the paper “The State of the Art in Locally Distributed Web-Server

Systems” [1] which presents a comprehensive and detailed overview of the

technologies available.

An overview of scalable web-server systems
A popular web site faces a constant need to increase capacity. This requires the

web system serving the site to be scalable. Web system scalability is defined as

the ability to support large numbers of accesses and resources whilst still

providing adequate performance.

Figure 4 Architecture solutions for scalable Web-server systems [1]

To build scalable web content delivery architectures, two major options exist:

• Scale-up (Single node): Continue to serve resources from one physical

server and upgrade the server hardware and/or software to cope with

higher traffic.

• Scale-out (Multiple nodes): Switch from using one physical server to

using multiple servers.

A Throttling Layer-7 Web Switch James Furness

 Page 16

A scale-up solution is limited by the resources available on a single physical

server, whereas a scale-out solution ideally allows more nodes to be “hot-

plugged” into the solution as traffic increases. A number of reasonably powerful

servers are also likely to be cheaper than one hugely powerful server.

Scale-out solutions are further grouped into two major categories: local scale-out

where the servers are co-located at a single network location and global scale-out

where the servers are geographically distributed.

This project is intended to present a cluster of co-located servers transparently as

if they were a single virtual server. Hence global scale-out solutions will not be

discussed further.

Local scale-out solutions can be further subdivided:

• Cluster-based web system: A collection of servers that present a single

system image to the outside (One DNS name and one virtual IP address,

or VIP). Each node contains its own disk and a complete operating system.

The front-end node, or web switch receives all inbound packets and routes

them to some web-server node. This is also the only local scale-out

solution that is capable of content-aware redirection.

• Virtual web cluster: Similar to a cluster-based web system, but all nodes

share the VIP such that each receives all inbound packets and filters them

to decide whether to accept or discard them.

• Distributed web system: A collection of servers that present multiple

system images to the outside, the switching is facilitated either by the

DNS server during the lookup phase (Where the DNS address is resolved

to an IP address) or simply by explicitly instructing the client which IP

address to use.

Again since this project is intended to present a cluster of servers transparently

as one virtual server, and additionally to provide content-aware redirection (Due

to the requirement for a heterogeneous server pool), only cluster-based web

systems will be discussed further.

The state of the art in Cluster-based web systems
Cluster-based web systems consist of a collection of co-located servers

interconnected through a single high-speed network that present a single system

A Throttling Layer-7 Web Switch James Furness

 Page 17

image to the outside. Each server node of the cluster usually contains its own disk

and a complete operating system.

The single system image is presented through one DNS name and one virtual IP

address (VIP). This provides the sole interface from the cluster nodes to the

Internet, and as such the architecture is completely transparent to the user and

client application. The VIP address corresponds to the IP address of one front end

node, or web switch (Multiple nodes sharing the same virtual IP address can also

be used).

Figure 5 Architecture of a cluster-based web system [1]

The web switch is able to uniquely identify each node through a private address,

either an IP address or a lower-layer MAC address. The key difference between

web switches is the OSI protocol stack layer at which the web switch routes

packets, at the transport layer (layer-4) or the application layer (layer-7).

A Throttling Layer-7 Web Switch James Furness

 Page 18

Figure 6 Example OSI Network Stack [4]

• Layer-4 web switches perform content-blind routing because they

choose the target server during the establishment of the connection before

the connection is actually opened. As such the redirection is efficient, but

is unaware of the content of the client request.

• Layer-7 web switches perform content-aware routing since the switch

establishes a complete TCP connection with the client and is able to

examine the HTTP request. This is less efficient but provides more

sophisticated dispatching.

Figure 7 Operations of layer-4 routing (left) and layer-7 routing (right) [1]

Since this project requires content-aware redirection, only layer-7 web switches

will be discussed further.

A Throttling Layer-7 Web Switch James Furness

 Page 19

Layer-7 Web Switches
Layer-7 web switches work at the application layer. This requires the switch to

establish a TCP connection with the client (I.e. the three-way handshake) and

then receive the HTTP request at the application layer.

The various approaches to layer-7 switching fall into two major groups: one-way

architectures and two-way architectures.

In two-way architectures, outbound traffic must pass back through the Web

switch. This approach has problems with scalability since the outbound bandwidth

of the switch(s) is shared between all nodes in the cluster. Additionally note that

the inbound traffic (the HTTP request) is likely to be many times smaller than the

outbound traffic (the content of the response). This means that the rate at which

responses can be sent is limited by the bandwidth through the web switch.

Figure 8 Layer-7 two-way architecture [1]

Two-way architectures include:

• TCP Gateway: A proxy running on the web switch at application level

receives requests. It maintains a persistent connection with each web

server and forwards each client request through a persistent connection to

the appropriate web server. It then receives the response through the

connection and forwards it to the client

A Throttling Layer-7 Web Switch James Furness

 Page 20

• TCP Splicing: The previous approach is computationally expensive since

all packets must flow up to the application layer. This approach forwards

packets at the network layer instead – once the client connection has been

established and the appropriate persistent connection chosen, the two

connections are spliced together. This requires the web switch to be

modified at kernel level.

In one-way architectures, the server nodes send outbound packets directly to

the client without them having to pass through the web switch.

Figure 9 Layer-7 one-way architecture [1]

One-way architectures include:

• TCP Connection hop: A software based proprietary solution implemented

by Resonate as a TCP based encapsulation protocol. Once the switch

establishes a connection to the client and determines the target server, it

hops the TCP connection to the server by encapsulating the IP packet in a

Resonate Exchange Protocol (RPX) packet and sending it to the server.

This operates at the network layer between the NIC and the TCP/IP stack,

minimizing the latency of incoming packets. The server can reply directly

to the client because servers in the pool share the same VIP address as

the web switch.

• TCP hand-off: Once the switch establishes a connection to the client and

determines the target server, it hands off its endpoint of the TCP

A Throttling Layer-7 Web Switch James Furness

 Page 21

connection to the server, which can communicate directly with the client.

Modification to the operating systems of both the web switch and servers

is required. HTTP/1.1 connections are allowed by letting the web switch

assign HTTP requests in the same connection to different target servers.

Dispatching Algorithms
In all types of web switch, dispatching algorithms are required in order to ensure

that the load is shared between servers where multiple servers are eligible to

receive a request. An overview of algorithms is presented below.

Because they run on the web switch, dispatching algorithms have access to all

information the web switch has. As such they can be classified according to the

type of web switch they are used on.

Figure 10 Taxonomy of dispatching policies in Web clusters [1]

Content-blind

Static algorithms do not consider any state information:

• Random – requests are distributed randomly with equal probability of

each server

• Round-Robin – uses a circular list and distributes requests to each server

in turn

These algorithms can be adapted to include weightings for servers with differing

capacities.

Client state aware algorithms partition requests through client information such

as IP address.

A Throttling Layer-7 Web Switch James Furness

 Page 22

Server state aware algorithms generally use a server load index to assign

requests:

• Least Connections assigns new requests to the server with fewest active

connections

• Fastest Response Time assigns new requests to the server that is

responding fastest, i.e. showing the smallest object latency time in the last

observation interval

• Dynamic weighted Round-Robin is a weighted version of the Round-

Robin algorithm that uses dynamic weights proportional to the server load

index

Client and server state aware algorithms combine the above techniques in

order to assign consecutive multiple connections from the same client to the

same server, for example to ensure all requests from a SSL session are sent to

the same server to avoid regenerating session keys etc

Content-aware

Client state aware content-aware algorithms use attributes of the request to

partition the request:

• URL Hashing uses a hashing algorithm to partition the requests so only

one server handles each request, this achieves the best cache hit rate but

does not consider load balancing

• Service Partitioning: uses specialised servers for certain types of

request

• Size Interval Task Assignment with Equal load (SITA-E) partitions

content among the servers according to the size of the requested file, in

order to separate servers for heavy tasks and light tasks (assuming the

service time is proportional to the file size)

• Client-Aware Policy (CAP) recognises different requests use different

resources on the server and divides requests into various classes

according to which resources they use (E.g. disk-bound, CPU-bound and

network-bound). CAP uses Round-Robin for each load class to share each

load class among multiple servers.

Client and server state aware content-aware algorithms again combine client

and server state information:

• Locality-aware Request Distribution (LARD) [12] considers both

locality as with URL Hashing and load balancing. Requests for the same

A Throttling Layer-7 Web Switch James Furness

 Page 23

web object are distributed to the same server node as long as it’s load is

below a given threshold, ensuring the object is more likely to be found in

the disk cache of the server node. When the load increases above the

threshold the request is assigned to the least loaded node, creating a pool

of two servers likely to have this object in their cache. Subsequent

requests between this pool, and the pool grows and shrinks automatically.

• Cache Manager relies on a cache manager aware of the cache content of

all web servers, if a request is not in the cache it is assigned to the least

loaded server. Otherwise the least loaded server with the object in its

cache is selected (providing the load of that server is below a threshold)

2.4.3 Increasing Processing Speed

Instead of attempting to reduce the incoming request rate or increase the request

processing capacity, high demand could be dealt with by changing the responses

such that they can be generated more quickly. There does not appear to be any

research using this methodology.

2.5 Summary
A great deal of research has been conducted into adapting web sites to cope with

high demand. The vast majority of this research concentrates on increasing the

web site’s capacity to handle requests.

The aim of this project is to provide a certain level of increased capacity and fault

tolerance, but to primarily concentrate on the novel technique of increasing speed

at which requests are processed under high demand. This means that “everybody

gets something” rather than “some people get everything”, and may mean that

during high loads the site seen by users is not as graphically intensive and

aesthetically pleasing as usual, it is certainly more user-friendly than a

“connection timed out” error message.

A Throttling Layer-7 Web Switch James Furness

 Page 24

A Throttling Layer-7 Web Switch James Furness

 Page 25

3 Design Overview

3.1 Introduction

This chapter provides a high-level overview of the design of the system that aims

to meet the specification (See section 1.2).

3.2 Terminology
The following terminology will be used in the remainder of the report:

• Virtual Server: The virtual image of a single web server presented to the

outside world by the cluster

• Virtual Path/File: A URL on the virtual web server

• Pool Server: A physical web server hosting some of the virtual paths on

the virtual server

• Physical Path/File: A URL on one of the pool servers

3.3 System Architecture
The system is intended to provide a front-end web switch for a cluster-based web

system with the following features (Defined in section 1.2):

• Load balancing

• Heterogeneous server pool

• Throttling

• Adaptable

Due to the requirements for the pool servers to be heterogeneous the switching

will have to be content-aware, i.e. at layer-7 or application layer.

The architecture of a layer-7 web switch can be abstracted into two layers:

• The control layer, which makes the routing decisions by translating the

virtual path of a request into one or more physical paths in order of

preference.

• The routing layer, which accepts connections, extracts the virtual path

from the request and queries the control layer for the appropriate virtual

path(s). It then attempts to retrieve the response from a physical path

starting with the most preferred. It then forwards the response to the client

A Throttling Layer-7 Web Switch James Furness

 Page 26

Control Layer

Routing Layer

1. Request

2. Virtual
Path

3. Physical
Paths

4. Ordered
Physical

Paths

5. Rewritten
Request

6. Response7. Response

Web Switch

User

Decode
Request

Virtual to Physical
Translation

Load
Balancing

Rewrite
Request

Pool
Servers

Forward
Response

Figure 11 Simplified operation of a layer-7 web switch

To simplify the design this abstraction will be used and each layer will be tackled

in turn.

3.4 Routing Layer
A large amount of research is available into routing mechanisms and the main

techniques and methodologies are settled.[1] Hence existing software should be

selected for this layer rather than trying to improve upon existing technologies.

The selected software should be minimally modified to interface with the Control

Layer.

3.5 Control Layer
The control layer is the “brain” of the web switch, and is where the features

specified in the project’s goals are implemented.

A Throttling Layer-7 Web Switch James Furness

 Page 27

This layer can be seen to contain two major components, the Virtual File System

and the Policy Engine. Additionally a configuration module handles loading and

storing system configuration and initialises the Virtual File System and Policy

Engine accordingly.

Control Layer Interface

Control Layer

Routing Layer

Virtual Path

Mapper Dispatching
Algorithm

Configuration
Module

System
Monitors

Callbacks

Policy Engine

Virtual File System

Monitoring
Data

Figure 12 Control Layer structure

3.5.1 Control Layer Interface

Purpose
The layer interface is the only point of connection between the Control Layer and

the Routing Layer.

Interface
The interface that the Control Layer exposes to the Routing Layer should take a

virtual path and return an interface that allows iteration through all physical paths

corresponding to the virtual path in order of preference. It should also provide

callbacks to allow the Routing Layer to notify when connections are opened and

aborted or finished to each physical path; along with timing data detailing how

long a connection took.

A Throttling Layer-7 Web Switch James Furness

 Page 28

Specification
The layer interface should retrieve an unordered list of all possible physical paths

for the specified virtual path from the Virtual File System. It should then use the

Policy Engine to sort these paths according to preference, and return the interface

specified above allowing the routing layer to select a physical path and provide

feedback.

3.5.2 Policy Engine

Purpose
The purpose of the policy engine is to cause different alternative physical paths

(alternative versions of a given page) to be sent to the client in response to the

requested virtual path. It also collects monitoring data on the system in order to

make these decisions.

Interface
The interface that the Policy Engine exposes to the Layer Interface should take an

unordered list of physical paths and return an ordered list of physical paths,

sorted by preference.

Specification
The Policy Engine should prioritise physical paths based upon the following types

of information:

• Monitoring Data

o System Data

o Host Data (about the pool server the Physical Path is on)

o Path Data (about the Physical Path itself)

• Metadata (Data from the XML configuration file about the Physical Path to

differentiate it from others)

The Policy Engine should be modular, allowing a new dispatching algorithm to be

dropped in as a replacement for the default. Extra metadata should be storable in

the Virtual File System and made available to the policy engine without

modification to the Virtual File System, and it should be possible to plug in extra

monitors to provide additional monitoring data.

A Throttling Layer-7 Web Switch James Furness

 Page 29

3.5.3 Virtual File System

Purpose
The purpose of the Virtual File System is to map a virtual address to one or more

physical addresses.

Interface
The interface provided by the Virtual File System should allow a virtual path to be

translated into an unordered list of all possible physical paths containing the

requested virtual file.

The Virtual File System should allow storage and retrieval of host and path data

for the use of the Policy Engine. This should be achieved by each returned path

providing an interface facilitating retrieval of monitoring data for the path and the

host it is stored in. Each path’s interface should allow real-time feedback of

response times and connection loads from the Routing Layer.

Specification
The virtual to physical mapping should be specified by XML files either stored

locally or on each web server. The XML format should allow individual files or

entire directories to be mapped and should also allow additional data to be stored

in order to be made available to the Policy Engine.

The in-memory representation of the data from the XML file should also allow

monitoring data to be stored for the use of the Policy Engine.

The list of XML configuration files should be provided by the configuration

framework, and should be parsed during initialisation. Additionally the system

should support reloading of the configuration whilst the system is running. This

should be supported as an atomic action to prevent inconsistent state.

3.5.4 Configuration Module

Purpose
The purpose of configuration module is to load and store configuration data for

the control layer. It should also handle the initial setup of the layer, and plug

dynamic components together, for example initialising the desired sorting

algorithm and system monitors and plugging them into the policy engine.

A Throttling Layer-7 Web Switch James Furness

 Page 30

Interface
The interface provided by the configuration module should allow components of

the Control Layer to load and store configuration values required by them. It

should also provide an Initialise function, which configures the Control Layer and

prepares it for operation.

3.5.5 Summary

The Control Layer is broken up into a number of modular components, allowing

each module to be developed and tested separately. Additionally the modularity

allows publicly exposed interfaces to be defined for components that are designed

to be replaceable by the end user.

The Control Layer as a whole uses the façade design pattern, where one interface

class handles all incoming calls from other classes. Any objects returned through

the façade class are converted to publicly exposed interfaces, limiting what

methods can be accessed and keeping the interface as abstract as possible in

order to reduce the constraints imposed on the internal structure of the Control

Layer.

3.6 Initial Monitoring data and metadata
The policy engine specification lists the types of monitoring data that should be

collected and states that the interface should be modular allowing additional

monitoring data and metadata to be added with minimal code changes.

This section specifies an initial base set of monitoring data and metadata. In

particular the response time monitoring data must be provided in the base set of

monitoring data since it requires much tighter integration with the Virtual File

System and Control Layer Interface.

The initial criteria for throttling were decided to be:

• Bandwidth: Although it is difficult to determine the bandwidth of the

entire connection between client and server, it is possible to know the

bandwidth of the connection between the web system and the Internet.

Although the inbound bandwidth cannot be controlled easily, the outbound

bandwidth can be controlled. Note that HTTP traffic involves an outbound

response usually several times the size of the inbound request.

The system should perform throttling to ensure that a web system on a

A Throttling Layer-7 Web Switch James Furness

 Page 31

limited connection does not flood its outbound connection to the Internet

when a large number of requests are being received. This ensures that all

clients receive a response in a timely manner.

• Load: When a site with dynamic pages is under heavy load, requests take

longer amounts of time and eventually take so long clients start timing out

before the response is received. However the time each request takes

varies, so some clients will receive responses and the majority will see

timeout errors. This was seen in the recent sale of tickets for Glastonbury

Festival, due to the extreme demand most people only received timeout

errors despite trying several times. Some were able to receive the first

booking page but then received a timeout after entering their credit card

details. A lucky few managed to book tickets!

The system should perform throttling to downgrade CPU/disk/database

intensive dynamic pages to less intensive alternative versions under high

load. This ensures that each request takes less time to service, and this

means that more requests can be served in a given period of time,

allowing all users to see something rather than some users see everything.

3.6.1 Monitoring data

Data collected
The initial monitoring data should provide sufficient data to perform throttling as

described above:

• Current system bandwidth usage

• Number of active connections to host (pool server)

• Recent host (pool server) standardised response times (See

standardising section below)

• Recent path standardised response times (See standardising section

below)

Response times should be stored in a stack of fixed size; older response times

should be removed to allow new ones to be added when the stack is full.

Additionally response times should only be stored for a defined length of time

before being expired in order to ensure data is relatively recent.

Rationale
System bandwidth usage is monitored in order to allow pages to be

downgraded to low bandwidth versions in response to increasing load.

A Throttling Layer-7 Web Switch James Furness

 Page 32

Number of active connections to host is monitored in order to allow a Least

Loaded dispatching algorithm to balance load between servers where a tie exists.

Standardised response times are stored as a measure of system load: As load

increases, limiting factors such as CPU power, disk access times and bandwidth

start to cause responses to take longer. This makes response time a

comprehensive and platform independent measure of end-to-end system

performance rather than traditional methods requiring several statistics from

various aspects of the system to be measured to try and gain an indication of

performance.

CPU RAM Disk

Client

Network
Connection

Top Level
Software

Underlying
Software

Hardware
Components

Operating System

Web Server Local DBMS

Application programming
technique (CGI, Servlets

etc)

Special
optimisation
techniques

(e.g. caching)

CPU

RAM

Disk

Operating System

Remote DBMS

Figure 13 Factors determining web server performance (Based upon diagram

from [19])

Research presented in [22] further confirms the suitability of response time as a

measure of system loading. The authors construct a simulation to measure the

response rate of a range of connections of varying bandwidth, with and without

an ongoing Flash Crowd Event:

A Throttling Layer-7 Web Switch James Furness

 Page 33

Figure 14 CDF of response rates during a Flash Crowd Event and during normal

traffic

It can be seen that during a flash crowd event all response rates (And hence

response times) drop. It can also be seen that this effect is seen much more

markedly by high bandwidth connections (In lower bandwidth connections the

client’s connection starts to become a limiting factor). Since the connection

between the web switch and pool server is high bandwidth, a significant change in

response time should be shown under heavy load.

Advantages
The method of data collection should reduce the “herd effect” [10]. This caused

by periodically testing the CPU usage or similar metrics from pool servers and

directing traffic to the least loaded server. All requests are then sent to the same

server until new information is propagated, quickly saturating the server.

In this design, because response times are being collected in real time and

immediately fed back into the system, the average standardised response time

provides an indication of the server’s load at that time. Similarly the number of

active connections to pool server is correct at any given time since this count is

maintained by the system itself, which controls connections

However, note that this design assumes that the web system has a reasonable

load upon pages since monitoring data is collected as requests are served. This

has the advantage that all pages are incorporated in the monitoring rather than

A Throttling Layer-7 Web Switch James Furness

 Page 34

an artificial test set. It also does not place any extra load upon the system by

running tests. However it has the disadvantage that no statistics are gathered if

the system is idle.

Because the measured response time is a thorough end-to-end indication of

performance, it is affected by two main types of factors: (Note that network

factors can be ignored because response times are measured only across the LAN

between the pool server and web switch, so network bandwidth is assumed not to

be a limiting factor)

• Local factors such as the pool server being heavily loaded

• Global factors usually specific to a particular type of page across all pool

servers, for example a backend database server being heavily loaded

causing CGI scripts to take longer than average to load.

By collecting recent standardised response times for each pool server in addition

to each path, the system can compensate for local factors more effectively. A

global factor will generally cause the response time average for all pool servers to

rise equally and all pool servers will be balanced equally.

3.6.2 Metadata

The initial metadata provided describing each physical path should allow throttling

based upon two of the major bottlenecks in web sites:

• Bandwidth weighting: The size of this version of the path relative to

other versions - to allow throttling to prevent the outgoing connection

from the cluster to the internet from being flooded, for example by

switching to text-only pages rather than multimedia pages under high load

• Load weighting: The CPU usage/database load/complexity of this version

of the path relative to other versions - to allow throttling to reduce the

CPU/database load on the site, for example by switching from CGI pages

to static pages under high load

• Average & Standard Deviation of target response time: See

standardising section below

All metadata should be imported from the XML file along with the physical paths.

Load and Bandwidth weightings should be specified as a value between 0

(minimum) and 1 (maximum).

A Throttling Layer-7 Web Switch James Furness

 Page 35

3.7 Standardising Response Times

3.7.1 Introduction

Data of response times on its own is not useful in raw form since the typical

response time varies between different paths depending on how CPU intensive

they are, database access etc. Additionally when trying to ascertain a pool

server’s performance relative to targets although an average response time

across all pages could be used, it would be more accurate if response times could

be standardised so they can be easily combined into a response time for the pool

server.

It seems sensible to assume that the response times under low load conditions to

one particular page can be considered to be a random variable following a normal

distribution ()2,σµN since the majority of responses will be served in the

average response time, some in slightly less time, some in slightly more time, but

with no skew towards either side.

0

0.04

-4 -3 -2 -1 0 1 2 3 4

µ

N
(µ

,σ
2)

Figure 15 The standard normal distribution ()1,0N

3.7.2 Implementation

All measurements are taken over the local network from the web switch to a pool

server. The following terminology is used:

• Target Average/Standard Deviation: The average and standard

deviation of response times of each physical path over the local network

under low load calculated before using the system (And independently of

the system). These values are constant and are stored with each physical

A Throttling Layer-7 Web Switch James Furness

 Page 36

path as its target response time average and standard deviation in the

XML configuration file.

• Measured Response Time: The length of time taken by one particular

attempt to load a given physical path.

• Standardised Measured Response Time: See below

• Measured Average Response Time: The average and standard

deviation of measured response times of each physical path collected

whilst using the system. These values vary constantly as the system runs.

Assuming the measured response time is a random variable following a normal

distribution ()2,σµN under low load, it can be then standardised (using the

target average/standard deviation) to follow the standard normal

distribution ()1,0N giving a Standardised Measured Response Time:

()

σ
µ 2−← xx

All collected standardised response times now follow the standard normal

distribution, so can be directly compared and averaged.

As load increases, limiting factors start to cause responses to take longer. This

load increase causes the distribution of measured response times to skew towards

the right hand side (See Figure 14). This implies that the average of the

distribution will increase from the target average. An increase in the measured

average compared to target average therefore implies the path is under heavy

load. The significance of this increase can be judged by comparing the difference

to the target standard deviation.

If instead of averaging measured response times, the average of standardised

measured response times is taken, under low load this will be 0. Under increasing

load, the same effect as above is noticed, but is relative to 0 rather than the

target average so a positive value implies requests are taking longer than

average. Because the scale has been standardised according to the standard

deviation of response times, a value of +1 means the average response time is 1

standard deviation above the mean and so on. Hence the average standardised

measured response time can be compared to other values for different files or

other pool servers.

A Throttling Layer-7 Web Switch James Furness

 Page 37

3.8 Summary
An architecture has been described which allows a pool of web servers to be

presented to the outside world as a single virtual server.

The Control Layer Interface ensures the Control Layer presents a suitable façade

to the Routing Layer, ensuring the Control Layer can be retrofitted to any desired

Routing Layer.

The Virtual File System component allows fully controllable mappings between

paths on the virtual server and paths on the pool servers, enabling the pool to be

heterogeneous. It also allows metadata to be provided with paths and monitoring

data to be collected on their performance.

The Configuration Module allows filters to be plugged into the system to monitor

performance.

The Policy Engine gathers all system state information together and presents it to

a dispatching algorithm, which can easily be replaced by a user-defined algorithm

if desired. A sensible base set of monitoring data has been specified.

A Throttling Layer-7 Web Switch James Furness

 Page 38

A Throttling Layer-7 Web Switch James Furness

 Page 39

4 Detailed Design

4.1 Introduction

This chapter builds upon the high-level design overview (See section 3) to provide

a detailed design of the system. It also details the tools used to implement the

system, the rationale behind design decisions that were taken and the problems

that arose during implementation.

The interface between each module of the system is described by listing

component classes of each module. A format similar to javadoc is used; only

public methods are specified. An outlined Method Detail section describes the

internal operation of methods with non-obvious side effects or implementing

noteworthy algorithms.

4.2 Implementation Tools and Techniques
This section provides an overview of the tools and techniques that should be used

in implementing the system.

Java 2 Platform, Standard Edition (J2SE 1.4.2)
The Java 2 platform [5] was chosen for development of the main application due

to the wide range of feature-rich APIs it provides. These allow an application to be

quickly and easily created using pre-written and pre-tested APIs for more

complex features.

Although Java runs more slowly than native code due to the overhead of its

Virtual Machine, significant advantages are gained through rapid development

capabilities and portability. Additionally it is generally accepted that Java is very

suitable for network applications since these tend to be IO bound rather than CPU

bound, and as such the Java code running slightly slower has a negligible effect.

Eclipse
Eclipse 3.0 [6] was chosen as the development platform due to its great

suitability as an IDE for Java development and the extensive range of features it

provides to make Java development as quick and simple as possible.

A Throttling Layer-7 Web Switch James Furness

 Page 40

CVS
Concurrent Versions System[7] was chosen for source code control, providing an

additional backup of code in addition to a full revision history allowing changes to

be reverted without requiring code to be rewritten.

Coding Standards
Sun’s Java coding style[8] was chosen as the standard for source code formatting

to ensure all code is presented in a consistent format.

Particular attention was paid to the organisation of packages, building up a

namespace to group related classes together. The project was designated

“mercury” and all new classes specific to the project were created in appropriately

named sub packages of the mercury package.

4.3 Control Layer

4.3.1 XML Configuration Format

The DTD of the XML configuration file is shown below. Additional attributes can be

added to the <file> tag if desired, these will be made available to the dispatching

algorithm without any code changes.

<?xml version="1.0"?>

<!ELEMENT servermanifest (virtualfile*)>

<!ELEMENT virtualfile (file*)>

<!-- Virtual Path -->

<!ATTLIST virtualfile path CDATA #REQUIRED>

<!ELEMENT file (#CDATA)>

<!-- URL of physical path -->

<!ATTLIST file url CDATA #REQUIRED>

<!-- Bandwidth weighting -->

<!ATTLIST file bandwidth CDATA #DEFAULT "0.5">

<!-- Load weighting -->

<!ATTLIST file load CDATA #DEFAULT "0.5">

<!-- Target avg response time (ms) -->

<!ATTLIST file average CDATA #DEFAULT "5">

<!-- Target response time std deviation (ms) -->

<!ATTLIST file stdev CDATA #DEFAULT "1">

A Throttling Layer-7 Web Switch James Furness

 Page 41

The state machine for the parser is shown below:

<servermanifest> <virtualfile> <file>

Close tag Close tag

Open tag Open tag

Figure 16 XML Parser state machine

A typical configuration file might look like the following:

<servermanifest>
 <virtualfile path="/html/">
 <file bandwidth="1" load="1" average="6" stdev="83"
url="http://sync20:7962/HI/html/"/>
 <file bandwidth="1" load="1" average="6" stdev="83"
url="http://sync21:7962/HI/html/"/>
 <file bandwidth="0.5" load="1" average="6" stdev="83"
url="http://sync20:7962/MED/html/"/>
 <file bandwidth="0.5" load="1" average="6" stdev="83"
url="http://sync21:7962/MED/html/"/>
 <file bandwidth="0" load="1" average="6" stdev="83"
url="http://sync20:7962/LOW/html/"/>
 <file bandwidth="0" load="1" average="6" stdev="83"
url="http://sync21:7962/LOW/html/"/>
 </virtualfile>

 <virtualfile path="/cgi-bin/">
 <file load="1" bandwidth="1" average="6" stdev="83"
url="http://sync21:7962/HI/cgi-bin"/>
 <file load="0.5" bandwidth="1" average="6" stdev="83"
url="http://sync20:7962/MED/cgi-bin"/>
 <file load="0.5" bandwidth="1" average="6" stdev="83"
url="http://sync21:7962/MED/cgi-bin"/>
 <file load="0" bandwidth="1" average="6" stdev="83"
url="http://sync20:7962/LOW/cgi-bin"/>
 </virtualfile>
</servermanifest>

4.3.2 Control Layer Interface (mercury.urimapper)

The control layer interface provides the interface between the routing layer and

the control layer. The URIMapper class provides this interface (And hence exhibits

the façade design pattern).

A Throttling Layer-7 Web Switch James Furness

 Page 42

public class mercury.urimapper.URIMapper

An instance of this class is created for each request.

public URIMapper(java.lang.String strURI) throws URIMapperException

Constructor. Takes the requested virtual path as a parameter. Constructs a

new URIMapper object for the requested virtual path. If an error occurs, an

URIMapperException is thrown.

Method Detail: Retrieves a list of Physical Paths containing the virtual path

from the Virtual File System. It then calls the selected dispatching algorithm

to sort the list of paths in order of priority and stores this internally.

public void moveStart()

Selects the first Physical Path in the list.

public void moveNext()

Selects the next Physical Path in the list.

public boolean hasMore()

Returns true if more Physical Paths are available in the list.

public java.lang.String CurrentURI()

Returns the URL of the currently selected Physical Path.

public MappedURICallback getCurrentURINotifyCallback()

Returns a MappedURICallback interface for the currently selected Physical

Path.

public class mercury.urimapper.URIMapperException

Extends java.lang.Exception. Thrown when an error occurs creating an

URIMapper object. It contains a description of the error and a HTTP response

code allowing a response to be sent to the client (E.g. a 404 File Not Found might

be thrown if no physical paths are found for the requested virtual path)

public URIMapperException(java.lang.String strStatusCode,
java.lang.String errorMessage)

Constructor. Constructs an URIMapperException with the specified HTTP

status line (E.g. “404 Not Found”) and message (A description of the error)

public java.lang.String getHttpStatusCode()

Returns the status line associated with the exception.

A Throttling Layer-7 Web Switch James Furness

 Page 43

public java.lang.String getErrorMessage()

Returns a description of the exception.

public interface mercury.urimapper.MappedURICallback

This is the callback interface and allows the Routing Layer to provide monitoring

data feedback about a Physical Path

public void notifyComplete(long timeMilliseconds)

Called when a request has been successfully completed, specifies the time

taken in milliseconds

public void notifyActive()

Called when a request is started. The programmer must ensure either

notifyComplete or notifyAbort is called exactly once after each notifyActive call

public void notifyAbort()

Called when a request has been aborted

4.3.3 Policy Engine (mercury.logic)

public interface mercury.logic.Balancer

This is the interface all dispatching algorithms must implement.

public java.util.List balance(java.util.Collection uris)

Receives an unordered Collection of MappedURI objects. It should return an

ordered list containing the same objects listed in order of preference.

public void dumpState(java.io.PrintStream out)

Dumps the current state of the dispatching algorithm to the specified

PrintStream.

public void StartBalancer(MercuryConfig config)

Called to initialise the dispatching algorithm. Receives a reference to the

system MercuryConfig object (Allowing configuration data to be loaded/saved,

and also giving access to configured system monitoring data)

public void StopBalancer(MercuryConfig config)

Called to shutdown the dispatching algorithm. Receives a reference to the

system MercuryConfig object (Allowing configuration data to be saved)

public interface mercury.logic.MappedURI

Provides the dispatching algorithm with access to all monitoring data and

metadata about a Physical Path

A Throttling Layer-7 Web Switch James Furness

 Page 44

public java.lang.String getURL()

Returns the URL of this Physical Path

public double getBandwidth()

Returns the bandwidth weighting of this Physical Path

public double getLoad()

Returns the load weighting of this Physical Path

public java.lang.String getAttribute(java.lang.String name)

Returns an additional attribute from the XML <file> tag or null if the attribute

was not specified for this Physical Path.

public MappedHost getHost()

Returns a MappedHost interface representing the host that this Physical Path

resides on

public double getAvgResponse()

Returns the current average standardised measured response time for this

Physical Path

public interface mercury.logic.MappedHost

Provides the dispatching algorithm with access to all monitoring data about the

host a physical path resides on

public long getConnectionCount()

Returns the number of connections currently active on the host

public double getConnectionFraction()

Returns the fraction of total connections that are on this host, i.e. 1 if all

connections are on this host, 0 if no connections are on this host.

public double getAvgResponse()

Returns the current average standardised measured response time for this

host

public java.lang.String getName()

Returns the hostname of this host

public class mercury.logic.DefaultBalancer

Implements Balancer. This class implements the default dispatching algorithm,

described in section 4.3.8.

A Throttling Layer-7 Web Switch James Furness

 Page 45

4.3.4 Policy Engine System Monitors (mercury.monitors)

public interface mercury.monitors.SystemMonitor

Interface. This is the interface all system monitors must implement.

public java.lang.String GetName()

Returns the name of this monitor

public void StartMonitor(MercuryConfig config)

Called to initialise the monitor. Receives a reference to the system

MercuryConfig object (Allowing configuration data to be loaded/saved)

public void dumpState(java.io.PrintStream out)

Dumps the current state of the monitor to the specified PrintStream.

public void StopMonitor(MercuryConfig config)

Called to shutdown the monitor. Receives a reference to the system

MercuryConfig object (Allowing configuration data to be loaded/saved)

public interface mercury.monitors.SystemBandwidthMonitor

Extends SystemMonitor. This is the interface the system bandwidth monitor must

implement. (The code of the monitor is specific to the routing layer)

public double GetCurrentBandwidth()

Returns the current bandwidth usage of the system in bytes per second.

4.3.5 Virtual File System (mercury.vfs)

abstract class mercury.vfs.VirtualPath

Abstract. This class is the in-memory representation of the virtual file system.

Each instance represents a node in the VFS tree. Not visible outside of the

package.

public void addPath(RealPhysicalPath p)

Adds the selected RealPhysicalPath to the list of paths this Virtual Path maps

to (Used by the XML importer)

public mercury.vfs.VirtualPathRoot

Extends VirtualPath. This class is the in-memory representation of the root of the

virtual file system tree. It exhibits a variant of the singleton design pattern, many

instances may be created but only one may be currently active. This allows

atomic loading of the configuration.

A Throttling Layer-7 Web Switch James Furness

 Page 46

public VirtualPathRoot()

Constructor. Constructs a new VirtualPathRoot object representing the root of

an empty VFS tree. This allows configuration to be loaded on this tree, which

can then be made active as an atomic operation

public static VirtualPathRoot getCurrentRoot() throws
mercury.vfs.VFSException

Returns the root of the currently active VFS tree. Throws a VFSException if no

tree is currently active

public java.util.Collection getPhysicalPaths(java.lang.String URI)
throws mercury.vfs.VFSException

Returns a collection of PhysicalPath objects representing all Physical Paths

that the given URI (Virtual Path) maps to

Method Detail: Calls a recursive method provided by the VirtualPath class,

which recurses down the tree from the root until the specified node is

reached. During this recursion PhysicalPath objects associated with each node

are collected by calling the associated RealPhysicalPath’s

GeneratePath(subPath) method with the remainder of the URI string see

RealPhysicalPath.GeneratePath for more detail.

This means that entire directories can be mapped and specific mappings can

be added for specific subdirectories or files – for example one PhysicalPath

could be specified for the root path, implying one server has a copy of all files.

Subpaths could then add to this mapping by defining additional servers for

specific files or directories.

public VirtualPath getVirtualPath(java.lang.String URI)

Returns a VirtualPath object representing the node of the VFS tree

corresponding to the given URI. The specified node and any parent nodes are

created as necessary

Method Detail: Calls a recursive method provided by the VirtualPath class,

which recurses down the tree from the root until the specified node is

reached, creating nodes as required

public void DumpTree(java.io.PrintStream out)

Dumps a string representation of the entire tree to the specified PrintStream

A Throttling Layer-7 Web Switch James Furness

 Page 47

Method Detail: Calls a recursive method provided by the VirtualPath class

which recurses down the tree printing nodes

public void dumpHosts(java.io.PrintStream out)

Dumps the current state of all hosts to the specified PrintStream.

public void loadConfig(java.lang.String url)

Loads an XML config file from the specified URL and adds all information to

this VFS tree

Method Detail: Creates a new XMLLoader class to load configuration into this

tree. It then uses SAX to parse the configuration file using the XMLLoader

class as a handler. SAX [28] was chosen for speed because it operates in one

pass, rather than DOM [21] which uses two passes and requires the entire

XML file to be parsed into memory before it can be used.

public void makeActiveRoot()

Makes this VFS root the active VFS tree. This allows the a new configuration

to be loaded in isolation and then switched into service atomically

class mercury.vfs.VirtualPathNode

Extends VirtualPath. This class is the in-memory representation of a node of the

virtual file system. Not visible outside of the package.

public java.lang.String getName()

Returns the name of this node (directory/file name)

class mercury.vfs.XMLLoader

Extends org.xml.sax.helpers.DefaultHandler. This class is used as a handler by

SAX when parsing XML config files. Not visible outside of the package.

public XMLLoader(mercury.vfs.VirtualPathRoot root)

Constructor. Constructs a new XMLLoader object ready to parse config files

and add the results to the VFS root specified

public void startElement(java.lang.String uri,
java.lang.String localName, java.lang.String qName,
org.xml.sax.Attributes attributes) throws org.xml.sax.SAXException

Handles an opening tag

A Throttling Layer-7 Web Switch James Furness

 Page 48

public void endElement(java.lang.String uri,
java.lang.String localName, java.lang.String qName) throws
org.xml.sax.SAXException

Handles a closing tag

public class mercury.vfs.VFSException

Extends java.lang.Exception. This class represents a VFS error.

public VFSException(java.lang.String message)

Constructor. Constructs a new VFSException.

class mercury.vfs.PhysicalHost

Implements MappedHost. This class represents a Physical Host (Pool server). Not

visible outside of the package.

public static PhysicalHost CreateHost(java.lang.String name)

Returns a PhysicalHost object representing the specified hostname. A new

object is created if necessary

Method Detail: Monitoring data for physical hosts is preserved across reloads

of the VFS. This is achieved by registering all hosts in a private static Map

object. This method checks to see if the host is in the map, if it is not a new

host is created and added to the map.

public java.lang.String toString()

Returns a string detailing the current state of the host and the values of

monitoring data

public long getConnectionCount()

Returns the current active connection count of this host.

public double getConnectionFraction()

Returns the fraction of total connections that are on this host, i.e. 1 if all

connections are on this host, 0 if no connections are on this host.

public void notifyActive()

Increments the active connection count of this host (Synchronized for thread

compatibility)

public void notifyAbort()

Decrements the active connection count of this host (Synchronized for thread

compatibility)

A Throttling Layer-7 Web Switch James Furness

 Page 49

public void notifyComplete(double normalisedTime)

Decrements the active connection count of the host. Records the normalised

measured response time in the host’s monitoring data.

Method Detail: A synchronized method decrements the active connection

count of the host. normalisedTime is then added to the host’s StatsArray.

public double getAvgResponse()

Returns the average normalised measured response time for this host.

Method Detail: Retrieves the value from the host’s StatsArray

public java.lang.String getName()

Returns the hostname of this host.

public abstract class mercury.vfs.PhysicalPath

Implements MappedURI, MappedURICallback. This class represents a Physical

Path.

class mercury.vfs.RealPhysicalPath

Extends RealPhysicalPath. This class represents an uncloned Physical Path. Not

visible outside of the package.

public PhysicalPath GeneratePath(java.lang.String subPath)

Called by VirtualPath when mapping virtual paths to physical paths. This

returns a PhysicalPath object representing the physical path with the subPath,

if any, appended to the URL (Allows mapping of entire directories by

appending filenames/subdirectories to the URL)

Method Detail: If the subPath is empty, GeneratePath simply returns this

(the RealPhysicalPath object it was called on). Otherwise a new

ClonedPhysicalPath is created and returned, with this as its parent and the

specified subPath.

public static RealPhysicalPath CreatePath(java.lang.String url,
double bandwidth, double load, double responseAvg,
double responseStdev, java.util.Map attributes) throws
java.net.MalformedURLException

Called by XML importer. Returns a RealPhysicalPath object representing the

specified URL. A new object is created if necessary; otherwise the existing one

is updated with the parameters specified. Throws a MalformedURLException if

the URL could not be parsed.

A Throttling Layer-7 Web Switch James Furness

 Page 50

Method Detail: Monitoring data for physical paths is preserved across

reloads of the VFS. This is achieved by registering all paths in a private static

Map object. This method checks to see if the path is in the map, if it is not a

new path is created and added to the map. Additionally note that another Map

object is passed in containing any extra tag attributes found in the XML file.

If a new path is created, the method also uses java.net.URL to extract the

hostname from the URL and calls PhysicalHost.CreateHost to obtain a

PhysicalHost object for the pool server containing the physical path, which is

stored in the new RealPhysicalPath object.

public java.lang.String getURL()

Returns the URL of this Physical Path

public double getBandwidth()

Returns the bandwidth weighting of this Physical Path

public double getLoad()

Returns the load weighting of this Physical Path

public java.lang.String getAttribute(java.lang.String name)

Returns an additional attribute from the XML <file> tag or null if the attribute

was not specified for this Physical Path.

Method Detail: Retrieves the specified attribute from a private Map object

containing extra attributes found in the XML tag

public MappedHost getHost()

Returns a MappedHost interface representing the host that this Physical Path

resides on

public double getAvgResponse()

Returns the current average standardised measured response time for this

Physical Path

Method Detail: Retrieves the value from the path’s StatsArray

A Throttling Layer-7 Web Switch James Furness

 Page 51

public void notifyComplete(long timeMilliseconds)

Normalises the given time and records this normalised measured response

time in the path’s monitoring data. Also passes this information to the

PhysicalHost associated with the path.

Method Detail: Normalises timeMilliseconds according to the path’s target

average/standard deviation. Adds this to the path’s stats array and calls the

associated PhysicalHost’s notifyComplete(normalisedTime) method

public void notifyActive()

Called when a request is started. The programmer must ensure either

notifyComplete or notifyAbort is called exactly once after each notifyActive

call.

Method Detail: Calls the associated PhysicalHost’s notifyActive() method

public void notifyAbort()

Called when a request has been aborted

Method Detail: Calls the associated PhysicalHost’s notifyAbort() method

public java.lang.String toString()

Returns a string detailing the current state of the path and the values of

monitoring data

class mercury.vfs.ClonedPhysicalPath

Extends RealPhysicalPath. This class represents a cloned Physical Path. Not visible

outside of the package.

ClonedPhysicalPath(RealPhysicalPath parent, java.lang.String subPath)

Constructs a new ClonedPhysicalPath object with the specified parent and

subpath relative to the parent’s path.

public java.lang.String getURL()

Returns the URL of this Physical Path

Method Detail: Returns the parent’s URL with the subpath appended to it

public double getBandwidth()

Calls the parent’s getBandwidth() function and returns the value

A Throttling Layer-7 Web Switch James Furness

 Page 52

public double getLoad()

Calls the parent’s getLoad() function and returns the value

public java.lang.String getAttribute(java.lang.String name)

Calls the parent’s getAttribute(name) function and returns the value

public MappedHost getHost()

Calls the parent’s getHost() function and returns the value

public double getAvgResponse()

Calls the parent’s getAvgResponse() function and returns the value

public void notifyComplete(long timeMilliseconds)

Calls the parent’s notifyComplete(timeMiliseconds) function and returns the

value

public void notifyActive()

Calls the parent’s notifyActive() function and returns the value

public void notifyAbort()

Calls the parent’s notifyAbort() function and returns the value

public java.lang.String toString()

Calls the parent’s toString() function and returns the value of this appended to

the cloned URL

class mercury.vfs.StatsArray

This class provides a fixed size stack, values are pushed on and older values are

pushed off to make room if necessary. Values are expired after a given time. Not

visible outside of the package.

public StatsArray(int maxCapacity, long maxAge)

Creates a new statistics array with the specified capacity and maximum age

public void add(double normalisedValue)

Adds the specified normalised value to the array (Synchronized for thread

safety)

Method Detail: First the size of the array is checked, and the last element

removed if it is at capacity. The new value is added as the first element of the

array.

A Throttling Layer-7 Web Switch James Furness

 Page 53

Secondly the cached average is recalculated:

The expiry time of the last element of the array is checked and it is removed if

it has expired. This is repeated until the list is empty or the checked element

has not expired.

If the array is empty the average is set to zero and the last recalculation time

is set to the current time.

If the array is not empty the average is set to the sum of the array values

divided by the number of values and the last recalculation time is set to the

current time.

The cached average is used to speed up client requests by not having to

recalculate the data. It is calculated after adding a value because at this point

the proxy is in a cleanup phase and the client has received their data. This

means add can be called without slowing down the client response.

public double getAverage()

Returns the cached average of the values currently stored in the array

(Synchronized for thread safety)

Method Detail: To ensure the cached average is up to date if add() has not

been called recently, the last recalculation time is checked, if this was more

than 5 minutes ago, the recalculation procedure described in the add()

procedure above is run to expire old statistics and recalculate the average.

4.3.6 Configuration Module (mercury.config)

public interface mercury.config.ConfigStore

Interface. This is the interface the system configuration store class must

implement.

public java.util.Properties
getProperties(java.lang.String sectionName)

Returns all properties for the specified sectionName (sectionName should be

the fully qualified name of the calling class)

public void setProperties(java.lang.String sectionName,
java.util.Properties prop)

Sets the properties for the specified sectionName (sectionName should be the

fully qualified name of the calling class)

A Throttling Layer-7 Web Switch James Furness

 Page 54

public java.lang.String getProperty(java.lang.String section,
java.lang.String key)

Returns the property named key for the specified section (section should be

the fully qualified name of the calling class), or null if it is unset

public java.lang.String getProperty(java.lang.String section,
java.lang.String key, java.lang.String defaultstring)

Returns the property named key for the specified section (section should be

the fully qualified name of the calling class), or defaultstring if it is unset

public void setProperty(java.lang.String section,
java.lang.String key, java.lang.String value)

Sets the property named key to value for the specified section (section should

be the fully qualified name of the calling class)

public class mercury.config.MercuryConfig

This class handles the initialisation of the Control Layer, and creates all necessary

objects. It also connects plug in components such as the dispatching algorithm

and system monitors. It uses a modified version of the singleton design pattern

(only one instance can be active, but several can be created)

public MercuryConfig (ConfigStore store)

Constructor. Constructs a new MercuryConfig object, using the specified

ConfigStore to load/save configuration values. Throws an Error if Start() has

already been called on a MercuryConfig object (A configuration instance has

been activated).

Method Detail: This method constructs the object only. This allows

setSystemMonitor to be called to set up monitors before then calling Start().

This ensures all monitors have been initialised when the system dispatching

algorithm starts.

public static final java.lang.String SYSMONITOR_OUTBOUNDBANDWIDTH

The name of the system outbound bandwidth monitor, to be used with

get/setSysMonitor

public void dumpMonitors(java.io.PrintStream out)

Dumps the current state of all monitors to the specified PrintStream.

Method Detail: Calls the dumpState() method of all registered monitors.

A Throttling Layer-7 Web Switch James Furness

 Page 55

public ConfigStore getStore()

Returns the ConfigStore object to be used for loading/saving configuration

data

public static MercuryConfig Start()

Starts the Control Layer, loads configuration values and starts all monitors.

Throws an Error if Start() has already been called on a MercuryConfig object

(A configuration instance has been activated).

Method Detail: This instance is saved in a private static variable representing

the currently active instance. A list of VFS configuration files is retrieved from

the ConfigStore and the VFS system is initialised. Then the name of the

selected dispatching algorithm is retrieved from the ConfigStore class. A new

instance of this class is created using the Java Reflection API, and its

StartBalancer(config) method is called to initialise it.

public static void Shutdown()

Shuts down the Control Layer.

Method Detail: StopBalancer(config) is called to instruct the selected

dispatching algorithm to save it’s configuration and shut down. Then

StopMonitor(config) is similarly called on all registered system monitor

classes. Finally the MercuryConfig instance is deleted.

public void setSysMonitor(java.lang.String name,
SystemMonitor monitor)

Registers the SystemMonitor object passed with the specified name. Throws

an Error if Start() has already been called on a MercuryConfig object (A

configuration instance has been activated).

Method Detail: The SystemMonitor is added to a private Map object with the

name as the key. The StartMonitor(config) of the monitor is then called to

allow it to load configuration data.

public static MercuryConfig getInstance()

Returns the current instance of MercuryConfig. Throws an Error if Initialise()

has not been called

A Throttling Layer-7 Web Switch James Furness

 Page 56

public SystemMonitor getSysMonitor(java.lang.String name)

Returns the named system monitor or throws an Error if setSysMonitor has

not been called to register the monitor

Method Detail: Retrieves the SystemMonitor object from the private Map

containing registered monitors

public Balancer getSysBalancer()

Gets the selected dispatching algorithm

public int getHostStatsMax()

Returns the configured maximum number of normalised measured response

times to store with each PhysicalHost

public long getHostStatsAge()

Returns the configured maximum age of normalised measured response times

stored with each PhysicalHost

A Throttling Layer-7 Web Switch James Furness

 Page 57

public int getPathStatsMax()

Returns the configured maximum number of normalised measured response

times to store with each PhysicalPath

public long getPathStatsAge()

Returns the configured maximum age of normalised measured response times

stored with each PhysicalPath

4.3.7 Debugging and logging (mercury.debug)

public class SystemTrace

Extends Thread. Allows a thread to be created which runs in the background and

periodically logs the state of the Control Layer to a file. Uses the singleton design

pattern (Only one thread can ever be active)

public static SystemTrace StartThread(int delaySeconds,
java.lang.String filePath)

Returns a the currently running thread object, creating one if necessary. The

thread’s output path and delay is set to the specified values. If filePath is

“GUI”, statistics are displayed in a Swing GUI window instead of written to

file.

public void run()

Loops and periodically dumps the state of the Control Layer to a file.

Method Detail: Appends the current time in milliseconds to the file, then

calls MercuryConfig.dumpMonitors() to dump all system monitors,

MercuryConfig.getSysBalancer().dumpState() to dump the dispatching

algorithm’s state, and VirtualPathRoot.getCurrentRoot().DumpTree() to dump

the virtual file system tree.

4.3.8 Initial Dispatching Algorithm

Initially, the system bandwidth throttle is be calculated:

−

= 1,0,
2.0

8.0
maxmin maxR

R

T

current

B

A Throttling Layer-7 Web Switch James Furness

 Page 58

Where Rcurrent is the current outgoing bandwidth rate and Rmax is the bandwidth

rate cap. This is designed to keep the bandwidth throttle at 1 (unrestricted) until

the outgoing bandwidth reaches 80% of the cap value. The throttle value then

begins to drop until it reaches 0 at 100% of the cap value. It also drops

increasingly quickly as 100% is approached.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0% 20% 40% 60% 80% 100% 120%

Current bandwidth (% of max)

Th
ro

ttl
e

va
lu

e

Figure 17 System bandwidth throttle

The path bandwidth ranking (RB) is computed for each path:

() ()

()

 >

−+
−++−

=
otherwise
if

1
1 BB

BB

BBB
B

TW
TW

TTW
R

Where TB is the system bandwidth throttle as previously specified, and WB is the

path’s bandwidth weighting (from metadata). This is designed to rank paths

between 1 and 0 such that they are prioritised as follows: Firstly paths below the

bandwidth throttle, in descending order of bandwidth weighting, and secondly

paths above the bandwidth throttle in ascending order of bandwidth weighting.

This ensures paths below the throttle are prioritised over paths that are above the

throttle, and secondarily paths are prioritised in ascending order of distance from

the throttle value.

Also the path load ranking (RL) is computed for each path:

()µ−×= 1LL WR

A Throttling Layer-7 Web Switch James Furness

 Page 59

Where WL is the path’s load weighting (from metadata) and µ is the average

standardised measured response time for the path. This is designed to reward or

punish paths as they perform above or below 1 standard deviation of their

average response time. Paths are rewarded/punished increasingly heavily if they

have a high load weighting and also if they perform significantly above or below 1

s.d. Paths with a load weighting of 0 are neither rewarded nor punished. This is

similar to a utility value and represents the usefulness of the path to the user

given its current responsiveness.

The reason 1 standard deviation was chosen is because according to the standard

normal distribution (which µ follows – see standardising section below) 84% of

response times will be below this value if they conform to the standard normal

distribution, i.e. if the server is lightly loaded. As load increases, standardised

measured response times will start to increase above 1 s.d and this will pull µ

above 1 s.d.

-2

-1

0

1

2

3

4

-3 -2 -1 0 1 2 3

Average standardised measured response time (µ)

Pa
th

 lo
ad

 ra
nk

in
g

(W
L)

L=0
L=0.25
L=0.5
L=0.75
L=1

Figure 18 Path load ranking

The host load ranking (RH) is computed for each host as follows:

Total

H
H L

LR −=1

Where LH is the number of active connections to this host and LTotal is the number

of active connections to all hosts.

A Throttling Layer-7 Web Switch James Furness

 Page 60

A weighted sum of the following values is then computed for each path (weights

should be user-definable to allow different priorities to be set for different

requirements):

• Path bandwidth ranking (RB)

• Path load ranking (RL) (Normalised to be between 0 and 1)

Paths should then be sorted by this weighting in descending order. If two paths

have an equal weighting they should then be sorted by:

• Ascending sort by average standardised measured response time for host

• Descending sort by host load ranking (RH)

4.4 Routing Layer
Experimentation was conducted to determine the viability of available software to

modify and use as the Routing Layer.

4.4.1 TCP Hand-off

Initially, one-way architectures were investigated due to their high efficiency and

better scalability resulting from outbound packets flowing directly to the client

from the pool server rather than through the web switch.

TCP hand-off was the initial choice for the routing layer as the only non-

proprietary solution available. Test code from a paper written on the subject [9]

was obtained, and an attempt was made to set up the test code. This attempt

proved unsuccessful due to the unstable nature of the kernel patch, which was

merely for experimental use and was too unstable and “hack” like to be used

without significant time being invested. The attempt was abandoned in order to

conserve time for the more novel aspects of the project as supposed to reworking

an already proven technique.

The decision was made to use a method not requiring kernel modification,

described below.

4.4.2 TCP Gateway

This is a two-way architecture and is essentially a standard HTTP proxy server

configured to be forward facing. It receives requests from the client, rewrites

them and passes them on to a server, reads the response from the server and

writes it out to the client.

A Throttling Layer-7 Web Switch James Furness

 Page 61

It is less efficient than TCP hand-off since all packets must flow back through the

web switch, and up to the application layer before they are routed, however it

allows caching of responses and is the simplest solution to implement since it is

entirely at application level.

It was decided to use a TCP Gateway as the routing layer, and evaluate existing

Java proxy servers for modification. Due to the separation between the routing

layer and the control layer, it remains possible to later modify the system to use

TCP hand-off or an alternative routing layer with minimal code changes.

4.4.3 Evaluation of Proxy Servers

Initial Selection
A list of Java proxy servers was identified. Commercial and closed source servers

were removed from the list leaving four contenders:

• JProxy[13] looked to be designed with the individual user in mind rather

than a full-blown proxy server, and did not seem to be particularly

advanced (version 01beta)

• Muffin[14] is a sourceforge project designed for individual users to use as

a content filtering proxy (for removing adverts etc from downloaded

pages)

• RabbIT[15] is a sourceforge project designed to cache pages, compress

pages during transport and also act as a content filtering proxy

• Scache[16] is a sourceforge project designed to cache pages and also to

allow offline browsing of its cache

Although none of the proxies are designed with a traditional proxy/web cache role

in mind (Only the commercial offerings seemed to be designed this way, for

example Sun’s own Java System Web Proxy Server [17]), it should be possible to

easily strip them down to fulfil the requirements of the routing layer.

Evaluation
Jproxy was immediately rejected since it did not seem as suitable as the other

three options. The remaining three were then tested in a very quick and

rudimentary fashion using autobench [18]. They were also compared to a direct

connection to the web server and squid, a C based proxy server which is the

industry standard on UNIX based web caches.

A Throttling Layer-7 Web Switch James Furness

 Page 62

The results showed that all proxies performed reasonably well. Eventually Scache

was chosen since it had less unwanted features, making the stripping-down

process easier.

Initial Implementation
The initial version of the Control Layer was successfully interfaced with Scache

despite Scache consisting of somewhat messy code with Czech comments. Some

small modifications also had to be made to make the proxy forward-facing, i.e.

switching the proxy to handling local requests rather than handling requests to

retrieve remote pages.

However once the final version had been developed complete with monitoring

data collection, the obfuscated nature of the Scache code provided problems

adding timing code. This was because it was difficult to isolate the start and end

points of requests since three different functions existed to obtain the page

depending on its status in the cache.

A second visit to the cache’s homepage to try and obtain newer source revealed

that since the first visit, the project had been abandoned by the author and a

security notice advised users to stop using Scache due to a remote denial of

service vulnerability. Since the steps required to attach the Control Layer to

another proxy are minimal, it was decided to abandon modifications to Scache.

Second Implementation
RabbIT was selected as the next choice for modification. The API proved much

cleaner and comments were in English. After modification to convert it to a

forward-facing proxy, the API was fitted easily. (Full details of how to integrate

the API is provided in the documentation accompanying the code)

A bandwidth monitor for the system was created as follows:

rabbit.mercury.OutboundMonitorFilter

Extends java.io.FilterOutputStream. This class is wrapped around all

OutputStream connections between the web switch and the client, allowing

bandwidth usage to be monitored.

public OutboundMonitorFilter(java.io.OutputStream out)

Constructs a new OutboundMonitorFilter object to wrap the specified

OutputStream

A Throttling Layer-7 Web Switch James Furness

 Page 63

Method Detail: Constructs the class and registers it by calling the static

method OutboundMonitorThread.AddFilter()

public void write(byte[] b, int off, int len) throws
java.io.IOException

Writes to the OutputStream. Logs the number of bytes written.

public void write(byte[] b) throws java.io.IOException

Writes to the OutputStream. Logs the number of bytes written.

public void write(int b)throws java.io.IOException

Writes to the OutputStream. Logs the number of bytes written.

public void close()

Closes the OutputStream

rabbit.mercury.OutboundMonitorThread

Extends java.lang.Thread, Implements SystemBandwidthMonitor. This class is a

background thread that periodically polls total data sent and calculates the

current rate. It uses the singleton design pattern (only one thread may be

active).

public static void SetDelay(int delay)

Sets the delay between recalculating bandwidth usage

public static OutboundMonitorThread GetMonitor()

Returns the currently active thread

public void StartMonitor(mercury.config.MercuryConfig config)

Starts the thread and loads the configured delay from the configuration store.

The new thread calls setDaemon(true) in order to ensure it is terminated

when the proxy shuts down

public void StopMonitor(mercury.config.MercuryConfig config)

Stops the thread

public double GetCurrentBandwidth()

Returns the last calculated bandwidth usage

public void run()

Loops and periodically calculates the bandwidth usage (period specified by

delay)

A Throttling Layer-7 Web Switch James Furness

 Page 64

Method Detail: Initially a static byte counter variable was used for all

OutboundMonitorFilter objects. This required a synchronized block to prevent

updates whilst the data was collected. However because of the potential for

this to block all IO from the web switch simultaneously, the model was revised

to use a byte counter variable for each object.

This method iterates through all the objects, and calls a synchronized method

of each object, which uses a minimal synchronized block to obtain the byte

counter value, reset it, and then outside of the synchronized block calculates

and returns the rate. All the returned rates are added, and in a synchronized

block in this method, the new outbound rate is atomically moved into position.

References to the filter objects are stored using the

java.lang.ref.SoftReference class which allows garbage collection to destroy

the classes if memory is required and they are not referenced by anything

other than OutboundMonitorThread. Filter objects are also removed from the

list if their close() method has been called.

If three loops have occurred with no filter objects active, the thread pauses

itself by waiting on a lock object. When a new filter is added, the method

releases this lock causing the thread to restart.

public java.lang.String GetName()

Returns “System Outbound Bandwidth Monitor”

4.5 Portability
The system should be developed in Java as previously stated. No native code

should be used, providing portability to a large range of platforms.

4.6 Scalability and Resilience
The bottleneck in this system design is the single web switch. In terms of

resilience it provides a single point of failure. In terms of scalability it limits the

options to a scale-up of the server running the web switch software. As previously

discussed there are physical limits to the extent of this scalability.

A Throttling Layer-7 Web Switch James Furness

 Page 65

The system should be designed in such a way that web switches can be pooled in

a similar way to the web servers themselves. It should be able to operate in the

following configurations:

• Standalone web switch: A single web switch, no load-balancing or

resilience

• Failover configuration: One Active and one or more Hot Standby web

switches. The hot standby monitors the active switch and takes over its IP

address in the event of a failure. This provides resilience but no load-

balancing

• Load-balancing configuration: Two or more active web switches share

traffic. This is achieved by placing a content blind load balancer in front of

the active web switches. Content blind load balancers are able to handle a

much greater load because processing occurs at layer 4 of the OSI

protocol stack and hence no TCP connection is opened on the load

balancer (They simply route traffic) whereas the redirector servers operate

at layer 7 of the OSI stack and the user’s TCP connection must be

terminated at the server.

This now introduces a new single point of failure in the layer-4 switch,

however most implementations of layer-4 switches support failover

configurations as described above, and additionally some allow a hardware

load-balancing configuration to share traffic between switches.

Content-blind
load balancer

(Layer-4)

Web Switches
(Layer-7)

Server pool

Figure 19 A possible load-balancing configuration of the system

A Throttling Layer-7 Web Switch James Furness

 Page 66

4.7 Summary
The finalised design conforms to the architecture set out in the high level design.

It also has the potential to fulfil all of the project goals providing the

implementation works as specified in this design section.

Some of the key achievements of this design are:

• Configured by XML file – widely used file format

• VFS config reloads supported atomically without any downtime or

inconsistent VFS state, host/path monitoring data is persisted across

reloads

• User defined metadata can be added to the XML file and used in plugin

classes without any code changes

• Control Layer interface specified using façade design pattern hides internal

structure of Control Layer, Interfaces used wherever objects must be

returned by functions to further hide internal structure

• Exceptions used to cleanly raise errors outside the Layer

• User plugin classes (Dispatching Algorithm and System Monitor)

implement predefined interfaces. Start and stop methods are provided to

allow them to load/save configuration. They can be plugged into the

system without code changes simply by altering the configuration file

• Normalised host/path statistics stored in time-sliding window array.

Averages are cached for speed

• System can be scaled-out if one web switch does not provide suitable

capacity

• Connections to backend servers are pooled as a result of the proxy

architecture

• HTTP 1.1 and pipelining supported

A Throttling Layer-7 Web Switch James Furness

 Page 67

5 Testing

5.1 Introduction

This chapter details the testing that was undertaken.

Firstly tests were conducted to verify the functionality of the system. Secondly

tests were conducted to determine its effectiveness.

5.2 Unit testing

Thanks to the modular design of the system, it was possible to test each part of

the system individually after it had been implemented by creating simple test

harness classes.

This ensures that each component of the system is bug free and functions as its

specification states.

5.3 Integration testing
Once all components of the system were completed, an integration test was

conducted by running the application and conducting a number of test scenarios

designed to simulate both normal operation and error conditions.

The dispatching algorithm itself was not tested at this point other than to verify

that the algorithm’s decision was correctly followed by the code (This was

achieved by creating an extremely simple algorithm to sort paths in alphabetical

order and ensuring the routing layer then tries to access them in this order).

This ensures that the components of the system integrate correctly together and

the system as a whole is bug free.

5.4 Effectiveness testing
Once the system had been verified to be bug free, the effectiveness of monitoring

data and the dispatching algorithm were evaluated.

A Throttling Layer-7 Web Switch James Furness

 Page 68

5.4.1 Test setup

Apache 1.3.31[23] was installed on a pool of 5 machines. A set of documents was

configured on each machine containing simulated HTML pages, CGI Scripts and

binary files.

Three versions of the entire virtual server file tree were provided on each

machine, a high, medium and low bandwidth version, at /HI (Containing large

files), /MED (Containing medium files) and /LOW (Containing small files)

respectively.

Two CGI scripts were provided, MED.cgi which was a very simple Perl CGI script,

and HI.cgi which was a Perl script which also contains a 1 million iteration loop

inside which the value of a variable is changed several times. This should ensure

that the scripts are affected proportionately by load (Since the second one should

be somewhat more IO bound, although the single variable will almost certainly be

cached by the OS). The target response time average/standard deviation was

calculated under a light load. The base virtual file system configuration for all

tests was the following:

<servermanifest>
<virtualfile path="/html/">
<file bandwidth="1" load="1" average="6" stdev="83"
url="http://sync20:7962/HI/html/"/>
<file bandwidth="1" load="1" average="6" stdev="83"
url="http://sync21:7962/HI/html/"/>
<file bandwidth="1" load="1" average="6" stdev="83"
url="http://sync22:7962/HI/html/"/>
<file bandwidth="1" load="1" average="6" stdev="83"
url="http://sync23:7962/HI/html/"/>
<file bandwidth="1" load="1" average="6" stdev="83"
url="http://sync24:7962/HI/html/"/>

<file bandwidth="0.5" load="1" average="6" stdev="83"
url="http://sync20:7962/MED/html/"/>
<file bandwidth="0.5" load="1" average="6" stdev="83"
url="http://sync21:7962/MED/html/"/>
<file bandwidth="0.5" load="1" average="6" stdev="83"
url="http://sync22:7962/MED/html/"/>
<file bandwidth="0.5" load="1" average="6" stdev="83"
url="http://sync23:7962/MED/html/"/>
<file bandwidth="0.5" load="1" average="6" stdev="83"
url="http://sync24:7962/MED/html/"/>

<file bandwidth="0" load="1" average="6" stdev="83"
url="http://sync20:7962/LOW/html/"/>
 <file bandwidth="0" load="1" average="6" stdev="83"
url="http://sync21:7962/LOW/html/"/>
<file bandwidth="0" load="1" average="6" stdev="83"
url="http://sync22:7962/LOW/html/"/>

A Throttling Layer-7 Web Switch James Furness

 Page 69

<file bandwidth="0" load="1" average="6" stdev="83"
url="http://sync23:7962/LOW/html/"/>
<file bandwidth="0" load="1" average="6" stdev="83"
url="http://sync24:7962/LOW/html/"/>
</virtualfile>
<virtualfile path="/cgi-bin/test.cgi">
<file load="1" bandwidth="1" average="2830" stdev="2825"
url="http://sync20:7962/cgi-bin/HI.cgi"/>
<file load="1" bandwidth="1" average="2830" stdev="2825"
url="http://sync21:7962/cgi-bin/HI.cgi"/>
<file load="1" bandwidth="1" average="2830" stdev="2825"
url="http://sync22:7962/cgi-bin/HI.cgi"/>
<file load="1" bandwidth="1" average="2830" stdev="2825"
url="http://sync23:7962/cgi-bin/HI.cgi"/>

<file load="1" bandwidth="1" average="2830" stdev="2825"
url="http://sync24:7962/cgi-bin/HI.cgi"/>
<file load="0.5" bandwidth="1" average="131" stdev="1088"
url="http://sync20:7962/cgi-bin/MED.cgi"/>
<file load="0.5" bandwidth="1" average="131" stdev="1088"
url="http://sync21:7962/cgi-bin/MED.cgi"/>
<file load="0.5" bandwidth="1" average="131" stdev="1088"
url="http://sync22:7962/cgi-bin/MED.cgi"/>
<file load="0.5" bandwidth="1" average="131" stdev="1088"
url="http://sync23:7962/cgi-bin/MED.cgi"/>
<file load="0.5" bandwidth="1" average="131" stdev="1088"
url="http://sync24:7962/cgi-bin/MED.cgi"/>

<file load="0" bandwidth="1" average="14" stdev="865"
url="http://sync20:7962/HI/html/1297.html"/>
<file load="0" bandwidth="1" average="14" stdev="865"
url="http://sync21:7962/HI/html/1297.html"/>
<file load="0" bandwidth="1" average="14" stdev="865"
url="http://sync22:7962/HI/html/1297.html"/>
<file load="0" bandwidth="1" average="14" stdev="865"
url="http://sync23:7962/HI/html/1297.html"/>
<file load="0" bandwidth="1" average="14" stdev="865"
url="http://sync24:7962/HI/html/1297.html"/>
</virtualfile>
</servermanifest>

During all tests, the caching functionality of the routing layer (RabbIT) was

completely disabled. The access logging system of the routing layer was

configured to show the request virtual path, and the physical path that it was

mapped to. The SystemTrace class was used to show a GUI window refreshing

every second giving full details of the internal state of all components of the

Control Layer.

Siege[24] was used to generate load, running on the web switch in order to

eliminate network delay. Siege was used because it allows the maximum number

of concurrent connections to be limited, so load can be tested incrementally.

A Throttling Layer-7 Web Switch James Furness

 Page 70

Test results were obtained by creating a simple test harness class, which starts

the proxy, runs siege and allows a few seconds for the load to stabilise, then runs

the desired tests. Results are dumped out to CSV format for import to Microsoft

Excel.

5.4.2 List of tests conducted

I. System Bandwidth monitor

Purpose

Ensure the system bandwidth monitor is reporting correct values.

Dispatching Algorithm

Static algorithm configured to sort physical paths alphabetically.

Setup

Siege is configured to request a single URL for a duration of 5 minutes. In each

test run, the reported value of outbound bandwidth is recorded every minute and

an average is taken. The outbound bandwidth is allowed to drop back to 0 before

commencing each test run.

Variables

Maximum number of concurrent connections is increased in each experiment from

5-50 connections using a step size of 5.

Expected Result

As maximum number of concurrent connections increases, the total bandwidth

usage should increase proportionally until a limiting factor such as the web

switch’s maximum number of threads is reached.

Result

The following graph was obtained:

A Throttling Layer-7 Web Switch James Furness

 Page 71

0

100000

200000

300000

400000

500000

600000

700000

800000

0 10 20 30 40 50 60

Maximum number of Concurrent Connections

A
ve

ra
ge

 re
po

rt
ed

 b
an

dw
id

th
 u

sa
ge

 (B
yt

es
/s

)

Figure 20 Average reported bandwidth usage compared to number of concurrent

connections (Line shows linear trendline)

Conclusion

As expected, reported bandwidth usage is directly proportional to maximum

number of concurrent connections.

II. Host connection counter

Purpose

Ensure the host connection counter is reporting correct values.

Dispatching Algorithm

Static algorithm configured to sort physical paths alphabetically.

Setup

Siege is configured to request a single URL for a duration of 5 minutes. In each

test run, the reported number of connections to the host is recorded every minute

and an average is taken. The connection count is allowed to drop back to 0 before

commencing each test run.

Variables

Maximum number of concurrent connections is increased in each experiment from

5-50 connections using a step size of 5.

Expected Result

As maximum number of concurrent connections increases, one host’s connection

counter should increase proportionally. It will not be exactly equal due to the

pooling of spare connections and additional delays in tearing down connections

after the client has closed them. These factors will also cause some error. Note

A Throttling Layer-7 Web Switch James Furness

 Page 72

that only one host’s connection counter will change because the dispatching

algorithm will send all requests to the same host.

Result

The following graph was obtained:

0

50

100

150

200

250

300

0 10 20 30 40 50 60

Maximum number of Concurrent Connections

A
ve

ra
ge

 h
os

t c
on

ne
ct

io
n

co
un

te
r v

al
ue

Figure 21 Average host connection counter value compared to number of

concurrent connections (Line shows linear trendline)

Conclusion

As expected, the host connection counter value is directly proportional to

maximum number of concurrent connections, allowing for some deviation as

described above.

III. Bandwidth Throttle Value

Purpose

Ensure the internal bandwidth throttle is set correctly.

Dispatching Algorithm

Static algorithm configured to sort physical paths alphabetically, bandwidth

throttle calculation enabled as described in section 4.3.8.

Setup

The maximum outgoing bandwidth is set at 500,000 bytes/second. According to

test I this value should be reached at around 35 concurrent connections.

Siege is configured to request a single URL for a duration of 5 minutes. In each

test run, the reported value of the bandwidth throttle is recorded every minute

A Throttling Layer-7 Web Switch James Furness

 Page 73

and an average is taken. The throttle value is allowed to return to 1 before

commencing each test run.

Variables

Maximum number of concurrent connections is increased in each experiment from

5-50 connections using a step size of 5. Between 20-35 connections a reduced

step size of 1 was used.

Expected Result

The throttle should remain at 1 until 80% of the maximum bandwidth is reached.

It should then begin to drop to 0 and reach 0 when 100% of the maximum

bandwidth is reached. Note that the dispatching algorithm is static, so the system

will not try to compensate for the bandwidth usage. The graph obtained should be

similar to Figure 17 in section 4.3.8.

Result

The following graph was obtained:

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60

Maximum number of Concurrent Connections

A
ve

ra
ge

 b
an

dw
id

th
 th

ro
ttl

e
va

lu
e

Figure 22 Average bandwidth throttle value compared to maximum number of

concurrent connections (Line shows moving average, period 3)

Conclusion

As expected, the bandwidth throttle value fits the expected curve with some

deviation. This deviation is because the relationship between measured outbound

bandwidth and maximum number of concurrent connections is a dynamic

equilibrium, so some the relationship between bandwidth throttle value and

concurrent connections also becomes a dynamic equilibrium.

A Throttling Layer-7 Web Switch James Furness

 Page 74

IV. Bandwidth Throttle Operation

Purpose

Ensure the system delivers alternative versions of content correctly according to

the bandwidth throttle value

Dispatching Algorithm

Configured to sort only on path bandwidth ranking (described in section 4.3.8).

Paths with an equal ranking value are sorted alphabetically.

Setup

The maximum outgoing bandwidth is set at 500,000 bytes/second. According to

test I this value should be reached at around 35 concurrent connections.

Siege is configured to request a single URL for a duration of 5 minutes. In each

test run, the proportion requests receiving each type of page (HI/MED/LOW) is

recorded. The throttle value is allowed to return to 1 before commencing each

test run.

Variables

Maximum number of concurrent connections is increased in each experiment from

5-50 connections using a step size of 5. Between 20-35 connections a reduced

step size of 1 was used.

Expected Result

At low connection values 100% of requests should receive HIGH quality pages. At

round 25 connections this should tail off. At high connection values 100% of

requests should receive LOW quality pages. In the middle MED pages should

peak.

However because of the time taken for the throttle value to dropping from 1, it is

likely that HIGH quality pages will always account for a certain proportion of

responses. Also it is unlikely that the system will establish a completely stable

state since it operates as a dynamic equilibrium.

Result

The following graph was obtained:

A Throttling Layer-7 Web Switch James Furness

 Page 75

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

0 10 20 30 40 50 60

Maximum number of Concurrent Connections

%
 o

f r
es

po
ns

es

High Quality Medium Quality Low Quality

Figure 23 Response types compared to maximum number of concurrent

connections (Lines show moving averages, period 3)

Conclusion

As expected, 100% of responses are high quality at low numbers of concurrent

connections, and medium quality responses peak in the centre of the graph.

However, at higher numbers of concurrent connections the low/high quality

responses seem to level off.

The reason this occurs is as follows: Initially, the bandwidth throttle starts at 1

and high quality responses are sent, causing bandwidth usage to soar. The

bandwidth usage is updated every 5 seconds and once the first update has

occurred, the throttle drops to 0 due to the huge bandwidth usage. This causes

low quality responses to be sent, which causes the cycle to repeat. Hence the

bandwidth throttle value oscillates between 0 and 1, causing the responses sent

to be roughly equal in proportion.

V. Redesigned Bandwidth Throttle

Modifications

The formula for calculating the system bandwidth throttle was modified to include

damping:

A Throttling Layer-7 Web Switch James Furness

 Page 76

()B

current

B LastT
R
R

T ×+

−

×= 9.01,0,
2.0

8.0
maxmin1.0 max

The system bandwidth throttle was also prevented from being changed more than

once per second. This ensures that it can only alter by 0.1 each second. Initially

this damping was found to cause the throttle to never quite reach 1, preventing

the highest bandwidth pages from being sent. This was rectified by rounding the

value to 3 d.p.

Additionally the update speed of the system bandwidth monitor was increased to

1 second. This ensures that the results of changes in the throttle value are

propagated back quickly.

As a result of this increased update frequency, it was discovered that the

OutboundMonitorThread class was not thread safe – its internal list of registered

monitors was being added to by new connections whilst the thread was using an

Iterator to calculate the bandwidth used, causing unpredictable behaviour and

incorrect bandwidth usage to be reported. OutboundMonitorThread was modified

to place newly registered filters onto a queue and then have them added to the

main list of registered filters by the Thread itself. This reduces the amount of time

spent in synchronized blocks, increasing efficiency.

Retesting

Since the bandwidth monitor had been updated, test I was repeated this time

using 10 averages per point. The following graph was obtained (Standard

deviation of the 10 averages for each result was calculated and used to add Y

error bars of length 1 standard deviation):

A Throttling Layer-7 Web Switch James Furness

 Page 77

0

500000

1000000

1500000

2000000

2500000

3000000

0 10 20 30 40 50 60 70

Maximum number of Concurrent Connections

A
ve

ra
ge

 re
po

rt
ed

 b
an

dw
id

th
 u

sa
ge

(B

yt
es

/s
)

Figure 24 Average reported bandwidth usage compared to number of concurrent

connections (Line shows linear trendline)

Test II was not repeated because the modified bandwidth monitor does not affect

the connection counter.

Test III was repeated and error bars were added in the same way as Figure 24:

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70

Maximum number of Concurrent Connections

A
ve

ra
ge

 b
an

dw
id

th
 th

ro
ttl

e
va

lu
e

Figure 25 Average bandwidth throttle value compared to maximum number of

concurrent connections

Test IV was also repeated, giving the following graph:

A Throttling Layer-7 Web Switch James Furness

 Page 78

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

0 10 20 30 40 50

Maximum number of Concurrent Connections

%
 o

f r
es

po
ns

es

High Quality Medium Quality Low Quality

Figure 26 Response types compared to maximum number of concurrent

connections

Conclusion

Figure 24 shows reported bandwidth usage remains proportional to concurrent

connections, although the error is greater. This is because the bandwidth usage is

being calculated over a 1 second period rather than a 5 second period, so the

data is much more susceptible to the bursty nature of network traffic. The error

bars show there is indeed a reasonable fit, well within 1 standard deviation in

most cases.

Figure 25 gives a similar shaped graph to the previous result, however the error

is much greater. This is most likely due to the

Figure 26 shows that the redesigned algorithm is producing a graph which looks

exactly like the predicted shape in section IV. The other graphs show that the

redesigned algorithm has not significantly changed anything else.

VI. Host Connection Load Balancing

Purpose

Ensure the host connection load balancing algorithm operates correctly

Dispatching Algorithm

Configured to sort only on host load ranking (described in section 4.3.8). Paths

with an equal ranking value are sorted alphabetically.

A Throttling Layer-7 Web Switch James Furness

 Page 79

Setup

Siege is configured to request a single URL for a duration of 10 minutes. In each

test run, the reported number of active connections to each host is recorded

every minute and an average is taken.

Variables

Maximum number of concurrent connections is increased in each experiment from

5-45 connections using a step size of 10.

Expected Result

All hosts should have an equal connection load.

Result

The following graph was obtained:

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

0 10 20 30 40 50

Maximum number of Concurrent Connections

%
 o

f t
ot

al
 c

on
ne

ct
io

ns
 a

ct
iv

e
on

 h
os

t

Host1 Host2 Host3 Host4 Host5

Figure 27 Average percentage of connections on host compared to maximum

number of concurrent connections

Conclusion

Excepting one outlying point under low connection load (When the system is least

stable because the low volume of traffic tends to allow oscillations to occur more

easily), the connection load seems to be stable across hosts as predicted.

VII. Host Load Balancing

Purpose

Ensure the host load balancing algorithm operates correctly

A Throttling Layer-7 Web Switch James Furness

 Page 80

Dispatching Algorithm

Configured to sort on host average standardised measured response time

(described in section 4.3.8) followed by host load ranking. Paths with an equal

ranking value are sorted reverse alphabetically so that the MED cgi script is used

in all cases. This ensures that the host load affects the response times.

Setup

Siege is configured to request a single URL with a maximum of 30 concurrent

connections. At the end of each run the number of connections made to each host

are counted. During experimentation two hosts are heavily loaded using

stress[25]

Variables

Two hosts are heavily loaded, the other 3 are not loaded. 3 tests were run,

lasting 1 minute, 30 seconds and 15 seconds.

Expected Result

Requests should be shared equally between the 3 unloaded hosts, the 2 loaded

hosts should receive less requests.

Result

The following graph was obtained:

0

500

1000

1500

2000

2500

3000

High1 Low1 High2 Low2 Low3

Host

A
ve

ra
ge

 %
 o

f t
ot

al
 c

on
ne

ct
io

ns
 a

ct
iv

e
on

ho

st

1 min 30 seconds 15 seconds

Figure 28 Average percentage of connections per host

Conclusion

It can be seen that the dispatching algorithm quickly learns not to send requests

to the highly loaded hosts in all cases. However on longer runs the system builds

up a prejudice towards one host. This is because the low loaded hosts do not

A Throttling Layer-7 Web Switch James Furness

 Page 81

respond in exactly equal time, so a prejudice develops. Once this has happened,

the majority of requests go to this host, and eventually no requests go to the

other hosts. This causes their monitoring data to remain negative and stagnant,

so no requests will be sent to them until the monitoring data expires. Further

investigation is necessary to determine how to deal with this situation.

VIII. Path Load Balancing

Purpose

Ensure the path load ranking algorithm operates correctly

Dispatching Algorithm

Configured to sort on path load ranking (described in section 4.3.8).

Setup

Only one pool server was used for this test. Siege is configured to request a

single URL for a duration of 5 minutes. In each test run, the proportion requests

receiving each type of page (HI/MED/LOW load) is recorded. The throttle value is

allowed to return to 1 before commencing each test run.

Variables

Maximum number of concurrent connections is increased in each experiment from

5-50 connections using a step size of 5.

Expected Result

The expected result is the same as that of test IV. This is assuming the different

versions of the content respond proportionally worse under system load (I.e. if

system load is increased, high, medium and low response times are increased by

a factor of H, M and F respectively where H > M > F).

Result

The following graph was obtained:

A Throttling Layer-7 Web Switch James Furness

 Page 82

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

0 10 20 30 40 50 60

Maximum number of Concurrent Connections

%
 o

f r
es

po
ns

es

High Load Medium Load Low Load

Figure 29 Response types compared to maximum number of concurrent

connections

Conclusion

The resulting graph is exactly as expected.

IX. Overall performance

Purpose

To verify the advantage of using this system

Dispatching Algorithm

The complete algorithm (described in section 4.3.8).

Setup

Siege is configured to request a range of URLs on the server for a duration of 5

minutes. In each test run the throughput and average response time is recorded.

Variables

The test is run on the test VFS system. It is then re-run but with only the HIGH

load/bandwidth versions of content present.

Expected Result

The expected result is that due to the system’s ability to throttle connections, a

higher throughput and lower response time can be sustained with the alternative

versions of content in place.

Result

The following graphs were obtained:

A Throttling Layer-7 Web Switch James Furness

 Page 83

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50

Maximum number of Concurrent Connections

R
at

e
(tr

an
sa

ct
io

ns
/s

ec
)

With Alternatives Without Alternatives

Figure 30 Transaction rate against maximum connections with/without

alternative page versions

0

20000

40000

60000

80000

100000

120000

140000

0 10 20 30 40 50

Maximum number of Concurrent Connections

Th
ro

ug
hp

ut
 (b

yt
es

/s
ec

)

With Alternatives Without Alternatives

Figure 31 Throughput against maximum connections with/without alternative

page versions

Conclusion

The graphs show that the throttling algorithm provides a clear increase in

scalability compared to the same system running with the throttling algorithm

effectively disabled.

A Throttling Layer-7 Web Switch James Furness

 Page 84

A Throttling Layer-7 Web Switch James Furness

 Page 85

6 Evaluation

6.1 Introduction

This section evaluates the project in terms of its goals, and attempts to evaluate

how well each goal has been fulfilled.

6.2 Summary of Goals
In section 1.2 the goals of the project were defined to be producing a system

which fulfils the following criteria:

• Throttling

• Load balancing

• Heterogeneous pool

• Adaptable

As shown by experimental evidence in the previous chapter, the system correctly

throttles and load balances connections (With the exception of the limitations

detailed below). It also provides an improvement over the same system without

throttling (Note the system was not compared to other systems because the

implementation of this routing layer is designed to be a proof of concept rather

than optimal)

By design the system supports a heterogeneous pool of servers, this was verified

in integration testing.

Similarly by design the system is adaptable. Firstly various parameters are

configurable, for example the weights on the default load balancing algorithm can

be changed to alter the system’s behaviour. If the user desires to make major

alterations to the system’s behaviour, user defined system monitors and load

balancing algorithms can be implemented and plugged into the system with no

code changes to the system itself. Additionally the system can be retro-fitted to

any layer-7 web switch that is able to interface with Java.

The statistics array classes introduces some problems due to it causing feedback

– it affects whether or not a host/path is accessed, and once its values cause the

host/path to stop being accessed until the values in the array time out, a

A Throttling Layer-7 Web Switch James Furness

 Page 86

discussion of possible further work to overcome these is discussed in the next

section.

A Throttling Layer-7 Web Switch James Furness

 Page 87

7 Conclusion

7.1.1 Limitations

This section identifies the limitations of the system and highlights possible further

work.

The problems mentioned in the previous section caused by the statistics array

could be solved by damping the average value to ensure the system’s state

changes more steadily.

Alternatively, a possible extension to the project would be to investigate the

possible use of Change Detection Algorithms[26]. These do not require prior

knowledge of the typical performance of the system they are monitoring, and

instead build this up as they run. When a statistically significant change occurs it

is detected.

Figure 32 A Shewhart control chart (below) corresponding to a change in the

mean of a Gaussian sequence with constant variance [26]

A Throttling Layer-7 Web Switch James Furness

 Page 88

Another problem would be caused by a factor such as backend database load was

causing a slowdown – if one pool server contained more scripts relying on the

database than others, the server would be unfairly penalised since it’s average

response times would be higher than a server with a higher proportion of static

pages. Extension work could look into ways of detecting and compensating for

this.

Finally, if a proxy server was to be placed between the web switch and server

pool it would cause error in the results due to caching, it is difficult to know

whether to use a No-Cache: header to get accurate results or not use the header

in order to gain benefit from caching

7.1.2 Extensions

Possible extensions to the project include:

• If 2 or more web switches are being used in a load balancing

configuration, monitoring data could be shared via the network

• An algorithm could be added to periodically test infrequently accessed

pages to maintain monitoring data

• The algorithms used in the system could be formally proved using a

network simulator[27]

• Further investigation of the system’s behaviour over very low bandwidth

connections is required to determine the effectiveness of the system

bandwidth monitors; in particular these need to be evaluated to ensure

that the system’s buffering (in the case of outbound monitors) or lack

thereof (in the case of monitoring pool servers where the incoming

connection may be waiting on the client receiving data) does not cause

incorrect results

7.1.3 Summary of achievements

A system has been constructed which fulfils the initial goals. The system builds

upon existing research in this field, and provides a modular framework within

which users can specify load balancing algorithms. These algorithms are

presented with a base set of metadata and monitoring data which users can add

to without making code changes to existing classes. Testing has proved that

these monitors yield the expected values according to the state of the system.

A Throttling Layer-7 Web Switch James Furness

 Page 89

The load balancing algorithm investigated as the system default introduces the

novel concept of throttling. Testing has proved that this can provide increased

throughput compared to systems without this

The system has been implemented in a scalable and portable manner, enabling it

to be used on a variety of platforms on web sites of all popularities and sizes.

A Throttling Layer-7 Web Switch James Furness

 Page 90

A Throttling Layer-7 Web Switch James Furness

 Page 91

8 Bibliography
[1] V. Cardellini, E. Casalicchio, M. Colajanni, P. Yu. The State of the Art in Locally

Distributed Web-Server Systems, ACM Computing Surveys, Vol. 34, No. 2, June

2002, pp. 263-311

[2] http://news.netcraft.com/archives/web_server_survey.html

[3] http://hotwired.lycos.com/webmonkey/templates/print_template.htmlt?meta

=/webmonkey/geektalk/97/12/index4a_meta.html

[4] http://homepage.ntlworld.com/martin.hubert1/osi.htm

[5] http://java.sun.com/j2se/1.4.2/

[6] http://www.eclipse.org/

[7] http://www.gnu.org/software/cvs/cvs.html

[8] http://wwws.sun.com/software/sundev/whitepapers/java-style.pdf

[9] R. Kokku, R. Rajamony, L. Alvisi, H. Vin. Half–pipe Anchoring: An Efficient

Technique for Multiple Connection Handoff, 2002

[10] M. Mitzenmacher. How useful is old information, IEEE Transactions on

Parallel and Distributed Systems, Vol. 11, January 2000, pp. 6–20

[11] http://www.w3.org/CGI/

[12] V. Pai, M. Aron, G. Banga, M. Svendsen, P. Druschel. Locality-Aware Request

Distribution in Cluster-based Network Servers, (1998)

[13] http://www.geocities.com/SiliconValley/Bay/8925/jproxy.html

[14] http://muffin.doit.org/

[15] http://rabbit-proxy.sourceforge.net

[16] http://scache.sourceforge.net/

[17] http://wwws.sun.com/software/products/web_proxy/home_web_proxy.html

[18] http://www.xenoclast.org/autobench/

[19] E. Bletsas, Aeolus: A Web Server Benchmark for Dynamic Content, 2003

[20] J. Jung, B. Krishnamurthy, M. Rabinovich. Flash Crowds and Denial of

Service Attacks: Characterization and Implications for CDNs and Web Sites, 2002

[21] http://www.jdom.org/

[22] X. Chen, J. Heidemann, Flash Crowd Mitigation via Adaptive Admission

Control based on Application-level Observations, 2002

[23] http://www.apache.org/

[24] http://www.joedog.org/siege/

[25] http://weather.ou.edu/~apw/projects/stress/stress.html

[26] http://www.irisa.fr/sisthem/kniga/file2.pdf

[27] http://www.isi.edu/nsnam/ns/

A Throttling Layer-7 Web Switch James Furness

 Page 92

[28] http://sax.sourceforge.net/

