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Abstract

A novel system is proposed for the indexing, searching and browsing of an
intranet document repository for use as part of a corporate extranet. The system
allows users to browse a hierarchically organised collection of documents. The
hierarchy is automatically maintained by the system after a minimum of training.
Users additionally have the option to personalise the hierarchy in order to organise
the documents in any way they see fit. This document presents an overview of the

design of the system and the reasons for the various design choices.
The system has been implemented and initial tests on the system have been

conducted which show that the system would comfortably be able to handle a
repository sized between 3,000 and 30,000 documents.
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1 Introduction

1.1 Background

Since its birth in 1990, the world-wide web has shown phenomenal growth, due to
the huge growth of the internet, combined with its ideal suitability’ as a
mechanism for the rapid dissemination of information over the internet. The mass
availability of information through the world-wide web has spearheaded the
growth of Internet access and this has in turn further encouraged the growth of
the world-wide web.
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Figure 1 Growth of the World-Wide Web 1995-2005 [2]

(Upper line indicates hostnames, lower indicates unique hosts)

In the late 1990s, web portals such as Yahoo! [3] began to appear, and many
companies tried to build or acquire a portal. Services such as email, chat, games
and news were provided in order to secure the user-base by encouraging repeat

visits, and to increase the length of time spent on the portal by users. [1]

During the early 2000s, the focus of the web portal industry shifted towards the
corporate intranet portal, or “enterprise web”. Although the expectation of repeat

visits from millions of unaffiliated users and thus the generation of advertising

! It provided a simple and universal means for document retrieval (HTTP), a HyperText system for

document markup (HTML) and a means for uniquely and efficiently addressing all documents (URLs).

Page 9



A Personalisable Hierarchical Intranet Document Categoriser James Furness

revenue has been largely unfulfilled, the use of a portal to unite the web
communications and thinking within a large organisation has begun to be seen as
both money-saving and labour-saving. Some corporate analysts have predicted
that corporate intranet web portal spending will be one of the top five areas for
growth in the Internet technologies sector during the first decade of the 21%
century. [1]

Corporate intranet portals are now beginning to adapt to provide access to a
company’s business partners, suppliers and customers as well as employees
(sometimes referred to as a corporate extranet or corporate portal). These portals
aim to provide a virtual workspace for each individual using them, providing the
individual with access to all of the information, business applications and services

needed to perform their jobs. [4]

1.2 Motivation

A key component of corporate extranet technology is often a content and
document management system, providing services to support the full life cycle of
document creation and providing mechanisms for authoring, approval, version

control, scheduled publishing, indexing and searching. [1]

In particular the indexing and searching aspect of a document management
system is a problem which is traditionally tackled in a similar way to internet
searching, i.e. via a keyword search facility. Although this is an effective approach
for most applications, the problems are not entirely similar, and some of the
information harnessed in internet searching is unavailable in intranet searching
and vice-versa. An approach tailored specifically to searching a document
management system rather than one targeted at generic documents spread

across one or many websites could potentially provide a more effective solution.

This project was proposed by a company specialising in web technology and
knowledge management, EDF [10], in response to a need for a novel method of

organising documents on medium to large intranets.

1.3 Project Goals

This project attempts to create a novel system for indexing, searching and
browsing of an intranet document repository for use as part of a corporate

extranet. The system should provide the following features:

« Hierarchical structure: The system should organise the document
repository as a hierarchy by grouping related documents together.
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« Browsable: The primary means for retrieving documents should be
browsing through the document hierarchy.

« Automated: The system should organise documents automatically with a
minimum of training.

+ Personalisable: Ideally, the system should support some degree of

personalisation for individual users.

According to EDF [10], the intended size of document repositories is expected to
be between 3,000 and 30,000 documents.

1.4 Report Structure

Chapter 2 provides an overview of the technologies involved and the current
state of the art.

Chapter 3 contains a high-level overview of the chosen design.
Chapter 4 contains a detailed view of the chosen design.

Chapter 5 details the initial testing carried out on the system and proposes
further testing required.

Chapter 6 evaluates the performance of the system.

Chapter 7 summarises the achievements of the project, identifies limitations and
possible further work.

Page 11



A Personalisable Hierarchical Intranet Document Categoriser James Furness

Page 12



A Personalisable Hierarchical Intranet Document Categoriser James Furness

2 Background

2.1 Introduction

Traditional Data Mining techniques operate on structured data such as corporate
databases; this has been an active area of research for many years. More recently
with the advent of the World Wide Web, a rapidly growing repository of
unstructured data (in the form of text documents) has become available.

Information Retrieval is the science of searching for information in documents.
Research began in the 1980s in response to a need for automatic methods of
locating documents in large collections of texts. The commercial importance of this
area grew massively following the advent of the World Wide Web in 1991 and
subsequent exponential growth in the number of web pages.

Text Mining is the science of extracting novel, interesting and non-trivial
information from text. It is a much younger field than both information retrieval
and data mining, but is believed to have high commercial potential value,
particularly compared to data mining due to the fact that most information (over
80%) is stored as text, and this area is currently largely unexploited as shown in
Figure 2. [30]

100+

B Unstructured
(Text Mining)

O Structured
(Data Mining)

V]
V]
V]
V]
V]
1
V]
V]

Data volume Market Capitalisation

Figure 2 The business opportunity in text mining [34]
The commercial importance of text mining is further increasing due to the

exponential growth of the number of information sources available on the web and

the recent interest in e-commerce. [7]
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Text Mining is an interdisciplinary research area and attracts interest from a
number of research areas such as Databases, Information Retrieval and Natural

Language Processing.

Search Discover
(Goal-oriented) (Opportunistic)
Structured Data Data
Data Retrieval Mining
Unstructured Information Text
Data Retrieval Mining

Figure 3 “"Search” versus “Discover” [9]

Although Text Mining and Information Retrieval operate on the same type of data
they are clearly distinguished by their methodology. Information Retrieval is goal-
oriented and aims to locate as many relevant documents and as few non-relevant
documents as possible in response to a query, whereas Text Mining is
opportunistic and aims to discover new information in a dataset. These
approaches can be compared to their counterparts in the more established topic of
Data Mining, as shown in Figure 3.

This chapter presents an overview of the key technologies, concepts and existing
research related to the project:

« Firstly an overview of Information Retrieval techniques is presented.

e Secondly an overview of Text Mining is presented, building upon the
concepts of Information Retrieval and supervised classification algorithms
are discussed in detail.

e Finally an overview of protocols and technologies related to the markup

and delivery of internet and intranet documents is presented.
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2.2 Overview of Information Retrieval

2.2.1 Introduction

The purpose of a traditional automatic information retrieval strategy is to retrieve

all relevant documents whilst retrieving as few non-relevant documents as

possible. This is illustrated in Figure 4.

Producers of Texts

{

Text Collections
(Databases)

Representation
and Organization

Text Surrogates, y
Organized /

Person with Goals, Tasks,
/ Intentions, Etc.

f
oy
/
! Information Need or
Anomalous State of Knowledge

I’ 4

Representation

}

Query
A

t \ Cornp!rison /

or Interaction

Retrieved Texts

Use and/or Evaluation

}

Modification

Figure 4 A general model of information retrieval [5]

The left-hand side of the diagram represents the process of turning texts into a

form which is amenable to automatic processing, or text surrogate, consisting of

index terms, keywords or descriptors.

The right-hand side of the diagram represents the processing of a query arising

due to the user’'s anomalous state of knowledge or information need. The query is

then turned into a representation the system can understand.

The query is then compared to the collection of text surrogates and the texts

thought to be relevant are returned to the user, who evaluates the texts by

comparing them with the information the user expected to retrieve. This then
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often leads to modification of the query or possibly the information need or some
of the surrogates. Effectiveness of the system is determined by the extent to
which modification of the query is required.

2.2.2 Measuring Effectiveness

2.2.2.1 Precision and Recall
The results which are retrieved in response to a query can be split into two sets,
those relevant to the user’'s query and those not relevant. The results not

retrieved in response to the query can also be split similarly as shown in Figure 5.

RELEVANT NON-RELEVANT
RETRIEVED 4 N B AnB B
NOT RETRIEVED A ~NE y 7

4 A N

(N = number of documents in the system)

Figure 5 The ‘contingency’ table [6]

From this table, two of the most common measures of effectiveness can be
derived. [6]

Recall is defined as the ratio of relevant documents retrieved for a given query

over the number of relevant documents known to the system:

|4 n B
Recall = |A| (1)

Precision is the ratio of relevant documents retrieved over the total number of

documents retrieved:

o |4n B|
Precision = |B| (2)

Generally, a user wishes to achieve both high recall and high precision, but in

practice both cannot be simultaneously optimised.
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2.2.2.2 User-Oriented Measures

Precision and Recall fail to take into account individual users’ different
interpretations of what is relevant; as a result various user-oriented measures

have been proposed:

) R
Coverage Ratio = FK (3)

(Fraction of documents known to be relevant, which have been retrieved)

. R,

Novelty Ratio = —Y%— (4)
(R, + Ry )

(Fraction of relevant documents retrieved, which were previously unknown

to the user)

+R
Relative Recall = M (5)

(Ratio of relevant documents found by the system over the number of
documents the user expected to find)

where

U = Number of relevant documents known to the user

Rk = Number of relevant documents known to the user, which were
retrieved

Ry = Number of relevant documents previously unknown to the user,

which were retrieved

2.2.3 Document Representation

The information retrieval process, as shown above in Figure 4 requires text
surrogates to be derived from the collection of documents to be searched, and
organised in a way that facilitates queries to be processed quickly and efficiently.
In addition to this, if the collection of documents is large, the amount of space

required to store each surrogate may need to be minimised.

This requires a method of extracting from each document the words or terms
which best summarise the meaning of the document. This creates a number of
obstacles both due to the rather ambiguous nature of human language and also
due to the problems of minimising storage space whilst optimising query
processing accuracy and speed. Some of the most common solutions to these

problems are presented below.
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2.2.3.1 Tokenisation

The first step of processing is generally to divide the input text into tokens (or
unigrams), or terms, where each is either a word or something else like a number
or a punctuation mark. Often tokenisers split words where punctuation or white
space occurs, however this also breaks up hyphenated word pairs such as “hard-
disk”.

To further complicate matters, not all white space indicates a word break. In the
previous example “hard-disk” may also be written “hard disk”. Similarly
“database” and “data base” are both common written forms of the same concept.
This is known as a collocation or n-gram (in this case a bigram since it contains
two unigrams), where one or more words combined have a different meaning

together than individually. [21]

2.2.3.2 Stoplist Elimination

An extremely common approach in most information retrieval systems is to
eliminate very frequently occurring words since their ability to discriminate
between documents is low (for example “the” is contained in an extremely high
proportion of documents and generally provides little insight as to the meaning of
the document).

This is achieved by maintaining a list of terms known as a stoplist or negative
dictionary. This should take into account the type of documents the system is
intended to process. These terms are stripped out of the document and discarded

during processing.

2.2.3.3 Stemming

Stemming is the process of automatically conflating related terms, usually by
reducing them to a common form. One of the most well known stemming
techniques is Porter’s algorithm [11]. For example Porter’s algorithm would reduce
the words ‘engineer’, ‘engineers’, ‘engineered’ and ‘engineering’ to the common

root form ‘engineer’.

This serves to reduce the dimensionality of the document, providing a more
statistically accurate estimate for the number of occurrences of a given term.
However this has the disadvantage that information is lost due to this
dimensionality reduction. Another disadvantage is that the stemmer is a simple
algorithm and can overstem words, for example words such as ‘generate’,
‘general’, ‘generic’ and ‘generous’ are all stemmed to the same common form
‘gener’.
Page 18
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2.2.3.4 WordNet

WordNet [12] is a lexical database of the English language. It contains entries for
over 155,000 words, providing data on polysemy (words with more than one
meaning) and defines synsets of words representing a similar lexical concept.
These synsets are organised into a conceptual hierarchy similar to a thesaurus and

defines links between words according to a number of relations including:

* Hyponyms (“is a”) e.g. cat is a hyponym of animal

* Hypernyms (opposite of a hyponym) e.g. animal is a hypernym of cat
 Meronyms (“part of”) e.g. tail is a meronym of cat

» Antonyms (opposite) e.g. hot is an antonym of cold

",

¢ matml

r
I. goup :, I. peEon '. ------ —_ | Dhjtﬂ | '.mbgi:moe |
- - . L —
; g r . J e
f o ; oy ; Y oIgAnic
| farily | | relative | [ body | )
! \ !
h 4 h, A \ / Abslance
e ~k e e o - i
//: ’ \\
- ~ r o e y A ; b "
f Y f . (] k) [} i1
| brother p= - == s=ister | | arm | | leg || flesh | | bone |
\ ! \ ! ! { ! \ !
hypanymy antonymy MERORYITY

Figure 6 A WordNet conceptual hierarchy [42]

The use of WordNet provides a much more advanced solution to automated
conflation through using data specific to each word rather than an algorithm such
as Porter’s algorithm which exploits patterns in English words which are only true

in the majority of cases.

Additionally the use of WordNet provides for more advanced functionality than
conflation, for example the use of context to disambiguate polysemy or the use of
WordNet’s conceptual hierarchy to either add hypernyms of terms to the surrogate
or replace terms in the surrogate with their hypernym. This enables a specific
query to retrieve documents relating to a similar but more general concept and
vice versa. [13][14]

2.2.3.5 Term Weighting

In the "bag of words” model, the representation of the document contains no
information about the relative positioning of the words, only how many times they
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occur in the document (similar to a set except that items contained in a bag can
occur more than once). Despite this loss of data, a good approximation of the
meaning of the document is still retained, and both the space to store documents

and the processing power required for queries is reduced dramatically.

Frome oo (THncat SdE el
PR COMPGIIPIES oo |

references
hockey
oar

clinton

Iy vorae moqEanen s e apees” |
S b ok Tma Tochaicad andgsdive="

o U sy, tan i
| HmAuRAeCR: U
I ok,

i space
guicktimes

SRR eles

Figure 7 The “bag of words” model [31]

Hence, the document can be represented as a term vector of the form [15]:

D =(n,n,,...,n,) (6)

where each n; is equal to the number of times the corresponding term (or word)
appears in the original document.

In this model, the importance of a term in a document is assumed to be
proportional to how many times it appears. Clearly this model will be unfairly
biased towards large documents which contain more terms and therefore would

have a higher importance attached to their terms than a small document.
The above model can be refined to eliminate this bias by normalising the terms in

equation (6) into the range 0..1 (0 being a term that never occurs in the
document, 1 being a term that accounts for 100% of the document):

D:(lfl’lfza""lfi)

where (7)
ff, =

2.

k=1
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However, term frequency factors alone cannot ensure acceptable retrieval
performance since when high frequency terms are not concentrated in a few
particular documents but occur frequently in the whole collection (for example
words such as “the” or “a”), all documents tend to be retrieved and this affects the
query precision. Term discrimination conditions suggest that the best terms for
document content identification are those able to distinguish certain individual

documents from the remainder of the collection. [15]

This mathematical basis for this theory is Zipf's law [18]. Zipf proposed that the
product of the frequency of use of words and the rank order is approximately
constant. Zipf verified his law on American Newspaper English. Luhn, in his work
on automatic text summarisation [19], used Zipf's law as a null hypothesis to
enable him to specify two cut-offs to exclude non-significant words that were
either too rare or too commonly used to contribute significantly to the meaning of
the article. He then assumed that the resolving power, i.e. the ability of words to
discriminate content reached a peak half way between the two cut-offs and fell in

either direction to approximately zero at the cut-off points as shown below in
Figure 8.

f Upper Lower
cut-off cut-off

Resolving power of

—— sigmificant words
J—
p - /
y,

Freauency of words

Significant words

Words by rank order 7
Figure 8 Luhn’s Word-Frequency diagram [19] (Adapted in [6])
The most common approach to term discrimination is known as TF-IDF or Term

Frequency - Inverse Document Frequency. In this approach, the elements of

equation (7) are replaced with term frequency multiplied by an inverse document
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frequency which is inversely proportional to the prevalence of the term across the
document collection as a whole. The most common variant of this is TF-LogIDF
[15]:

D :(lf—idfl,lf_idfz""’lf_idfi)
where >

if —idf, =1f, x log(%j

X

where N is the total number of documents in the collection and df, is the

number of documents in which the term x occurs at least once.

Salton & Buckley [15] also propose a third term weighting factor for information
retrieval systems using variable length document vectors (where documents with
less unique words have a shorter vector) which attempts to compensate for
documents with a large number of terms having an increased chance of term
matches with queries and therefore a better chance of being retrieved than

shorter ones.

2.2.4 Query Processing

After the text surrogates have been created from the document collection to be
searched, the system is ready to accept queries. When a query is entered into the
system it undergoes a similar transformation to that involved in creating a text
surrogate from a document. This ensures that terms in the query are conflated

with equivalent terms in the text surrogate collection.

The transformed query is then compared to the collection of text surrogates and
matching results are returned, usually in order of relevance to the query. However
in a large collection of documents with a large collective vocabulary of terms it is
difficult to optimise the query to run both quickly and accurately (with both high
precision and recall). A number of common query processing strategies are

discussed below:

2.2.4.1 Boolean Model
The Boolean model is the simplest query processing model. Query terms are
connected by ‘AND’, ‘OR’ and ‘NOT'. The query only returns exact matches where

all terms in the query are in the document.

Ordering of returned results is achieved by adding up the weights of the terms

used in the query for each document.
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2.2.4.2 Vector Space Model

The Vector Space Model uses the principle that the document vector in equation
(8) can be used to represent documents as vectors in a multidimensional space.
Similarly a query can also be represented as a vector in the same
multidimensional space.

Figure 9 Two-dimensional vector space with terms as basis

The diagram above shows a simple two-dimensional space. The terms (T3, T>)
form the axes; documents (D;, D,) are represented in this space as vectors

relative to the axes. A query, Q, is represented similarly.

Under this model, the similarity of documents and queries can be compared using
the cosine similarity measure:

S ik il|\k|cos @
sinlf 7)== 1A ©)
i<l i [#]
Hence documents are compared based on the “best match” principle rather than
the “exact match” principle used in the Boolean model. However this lacks the
expressiveness of the Boolean model’s operators (AND/OR/NOT).

Wong et al. [17] propose an extension to the vector space model which allows

Boolean term correlations to be imported into the retrieval process whilst still

maintaining the “best match” approach.
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2.2.4.3 Relevance Feedback

Relevance Feedback is a common process in Information Retrieval where a user
refines a query by marking returned documents as relevant or non-relevant. The
system then computes a better representation of the user’s need based upon the
original query and the relevance feedback provided by the user. This process is
repeated until the user is satisfied with the results. One of the best known
relevance feedback algorithms is the Rocchio Algorithm [33].

2.3 Overview of Text Mining

2.3.1 Introduction

Text Mining is the process of extracting novel, meaningful and useful data, or
knowledge, from unstructured text. It is similar to the process of Data Mining, but
is @ more interdisciplinary field drawing also on linguistics, information retrieval,
statistics and computational linguistics to solve problems caused by the

unstructured nature of text.

2.3.1.1 The Text Mining Process

The steps involved in the Text Mining process is summarised below in Figure 10.

r ﬂ\
,:j'_/ z
Interpretation {
H Evaluation

Data Mining /
Pattern Discovery

g

Feature Selection

Text Transformation

/ ] {Feature Generation)
I I Text Preprocessing

Text

|
.—v
I

Figure 10 The Text Mining Process [9]

The initial steps in the process convert a document from raw text into a consistent
internal representation, and are exactly the same as the steps used in Information

Retrieval to produce a Text Surrogate:
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« Text Pre-Processing involves syntactic and semantic analysis on the text,
for example stemming or the use of WordNet.

+ Text Transformation converts the pre-processed document text into a
consistent internal representation so that documents can be compared to
each other. In general the internal representation utilises the “bag of
words” model.

» Feature Selection performs statistical analysis of the transformed text
and selects a subset of the terms available (often by selecting a percentage
of the highest TF-IDF weightings) in order to reduce processing power and
to reduce problems of estimation when the number of terms present is

much larger than the number of documents.

The raw text has now been transformed into a consistent internal representation,
and the Data Mining/Pattern Discovery process can take place. This is the
major component of the Text Mining process, taking pre-processed data and
turning it into knowledge. In Text Mining this generally takes the form of a

learning classifier.

2.3.1.2 Web Mining

The application of Text Mining specifically to the domain of Web Pages is known as
Web Mining. Additional information available specifically in this domain allows
knowledge discovery through other means than those available in standard text
mining (due to the availability of additional data such as usage patterns and link

structure); it also can provide additional information for use in classification.

Web Mining
/ ' \
Web Content Web Structure Web Usage
Mining Mining Mining
Agent Based Database
Approach Approach

Figure 11 Taxonomy of Web Mining (Adapted from [20])

There are 3 major categories of Web Mining:
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« Web Content Mining utilises the content of individual pages:
o An Agent Based Approach uses an intelligent agent which is
individual to the user and performs web mining on the user’s behalf.
o A Database Approach is generally a more centralised approach,
for example a search engine using web content mining to group
related web pages together.
+ Web Structure Mining utilises the structure formed by hyperlinks
between documents.
+ Web Usage Mining utilises user access patterns from web server access
logs.

A prominent example of using Web Structure mining to boost Text Mining is
Google [23]. Google uses a system known as PageRank [24] as one of the main
factors in ordering returned results. In essence, PageRank utilises the principle
that if a page is important or useful people will create links to this page, hence
pages with the most links leading to them are the most useful pages. A page’s
PageRank is proportional to the number of links pointing at that page. Also the
text of links is taken into account and if a number of links with the same text point
to the same page, this page will appear near the top of searches using the same
keywords as the link text.

It is interesting to note that a famous vulnerability of this algorithm is that a large
number of sites collaborating and creating links to a particular site can influence
the ordering of results, known as a “Google Bomb" or "Google Wash”. For example
in February 2005 this technique was used to place George W. Bush’s biography
page as the first result returned when searching for the keywords “miserable
failure”. [25]

Web Mining will not be discussed further since the intention of this project is to
concentrate on a repository of Intranet documents which may not necessarily

have links between each other and may not have access logs available.

2.3.1.3 Classification Algorithms

As mentioned previously, the major component of the Text Mining process is
generally a learning classifier. This takes pre-processed data and turns it into
knowledge. There are two types of learning classifier:

« A Supervised Learning Classifier (referred to in the remainder of this

document as a classification algorithm) automatically places new
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documents into groups or classes based upon statistical characteristics of
the new document and a training set of previously labelled documents.

* An Unsupervised Learning Classifier (referred to in the remainder of
this document as a clustering algorithm) automatically places documents
into groups or classes ‘a priori’ (without any prior training data).

Another classification technique is also available, a fixed classifier. This is
normally rule based and does not have the capacity to learn and therefore is
“unintelligent”. This makes it unable to discover knowledge per se, and so is not
generally used in Text Mining; however it is included in the taxonomy presented in

Figure 12 below for completeness.

Classifiers
Learning Fixed
Classifier Classifier
/ \ « Decision Trees
Supervised Unsupervised
Learning Learning
Classifier Classifier
* Naive Bayes * Clustering
» Neural Networks * Self-Organising
» Support Vector Maps
Machines

Figure 12 Taxonomy of Classification Techniques (Examples from [22])

2.3.2 Unsupervised Classifiers

The majority of clustering or unsupervised classification algorithms operate by
attempting to partition a dataset into clusters such that all documents in a cluster
share some common trait, i.e. inter-cluster similarity is minimised and intra-

cluster similarity is maximised.

Clustering algorithms have a major advantage over supervised classifiers in that
they have no preconceptions whatsoever about data, and therefore are able to
identify patterns that training would inhibit a supervised classifier from identifying.
However this is also a disadvantage in that by definition clustering algorithms do
not allow training and so it is not possible (without modification to the algorithm)
for the user to influence the process and personalise the output.
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Because this limitation is contrary to the goals of this project (personalisable
categorisation of documents), unsupervised classifiers are discussed only in brief

to provide a comparison to supervised classifiers.

2.3.2.1 k-Nearest Neighbour

The k-nearest neighbour algorithm utilises the vector space model (As defined in
section 2.2.4). Clusters are based upon centroids (which act as the “centre of
gravity” for a cluster).

The algorithm operates as follows [27]:

* Let d be the distance measure between instances.
+ Select k random instances {si, Sy,... Sy as seeds.
» Until clustering converges or other stopping criterion:
o For each instance x;:
= Assign x; to the cluster ¢; such that d(x;, s;) is minimal.
o (Update the seeds to the centroid of each cluster)
o For each cluster ¢;

2.3.2.2 Hierarchical

Hierarchical clustering algorithms are grouped into two broad categories:

» Agglomerative or bottom-up hierarchical clustering algorithms start with all
instances in separate clusters and repeatedly join the two most similar
clusters until there is only one cluster.

e Divisive or top-down hierarchical clustering algorithms start with all
instances in the same cluster, and divide the clusters until each instance

forms a cluster on its own.

Hierarchical clustering algorithms have the advantage that the number of clusters
does not need to be known in advance, and termination is guaranteed (k-NN is not
guaranteed to converge).

In the case of agglomerative clustering, the definition of “most similar” affects the
type of clusters that are produced: [27]

e “Centre of gravity” defines similarity as the distance between centroids.
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» Average-link defines similarity as the average cosine similarity between
pairs of elements.
» Single-link defines similarity as the cosine similarity of the most cosine
similar (Produces long, thin clusters).
« Complete-link defines similarity as the cosine similarity of the least cosine
similar (Produces tight, spherical clusters).

The output of hierarchical clustering can be represented as a dendogram as shown
in Figure 13 (below).

Figure 13 A dendogram [27]

This is then cut at the desired level (as indicated by the dotted line) to get the

final clusters; each connected component at the level of the cut forms a cluster.

2.3.3 Supervised Classifiers

Supervised classification algorithms generally operate through finding the pre-
existing class most similar to a new example. A classifier must be trained before it

can be used; a priori a classifier is unable to operate.

Formally stated, given training data {(xl,y),...,(xn,y} where X, are features or
terms in the document and y is the class assigned to the training instance, a

classifier h: X — Y maps an object x 1 X to a classification label y[1Y . [26]
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2.3.3.1 k-Nearest Neighbour

Introduction

The k-nearest neighbour algorithm is a classification variant of the k-nearest
neighbour clustering algorithm. It attempts to find the k nearest examples in the
training set to a new instance. The new instance is assigned to whichever class
has the highest number of documents in the k nearest examples. Training occurs

by simply adding examples to the relevant class in the training set.

P(Science|<)?

S

S S
S
O Government
° L ® Science
L ® Arts
([ )

Figure 14 6-Nearest Neighbour Classification [27]

Time Complexity
Training time complexity is of order 19(1) since it simply requires adding an

instance to the training set.

Searching for nearest neighbours naively would require the entire collection to be
searched, however by utilising a standard vector space inverted index (Which

optimises retrieval of all documents containing a given term); testing time

complexity is of order 19(B|K|) where B is the average number of training
documents in which a word in the test document occurs and |V,| is the average

vocabulary size for a test document. Typically B <<|D| . [27]
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2.3.3.2 Relevance Feedback (Rocchio Text Classifier)

Introduction

The rocchio algorithm incorporates relevance feedback into the vector space
model (both defined in section 2.2.4). Based upon the training set, a prototype
vector for each category is computed. New instances are assigned to the category
with the closest prototype vector based cosine similarity. Incorrectly classified
instances are manually classified and added to the training set. [6]

Figure 15 (below) shows an example of Rocchio Text Categorisation. The long-
dashed lines represent instances from one category with the longer bold line being
the prototype vector. Similarly the dotted lines represent instances from another
category. In the middle the solid line represents a new instance being classified,
the two arcs show the cosine similarity between it and the two prototype vectors.

A

Figure 15 Illustration of Rocchio Text Categorisation [27]

However with a polymorphic or disjunctive category, where documents are not all
clearly grouped together in vector space, a single prototype vector cannot
represent the category accurately as shown by the long-dashed lines in Figure 16

(below).
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A

Figure 16 Illustration of a Disjunctive Category under Rocchio [27]

In this example a nearest neighbour classifier would be able to cope better.

Time Complexity
The Rocchio algorithm decreases testing time compared to k-nearest neighbour if
the number of classes is much less than the number of documents, since only one

comparison to the prototype vector is required per class during testing.

Training time complexity is of order ﬁQDKLD +|VD|))=19QD|LD) where |D| is the
number of documents in the system, L, is the average length of a document in D

and V,, is the average vocabulary size for a document in D. [27]

Testing time complexity is of order 19(L[ +|C||K|) where L, is the average length

t
of a test document, |C| is the number of classes and |V,| is the average

vocabulary size for a test document. [27]
2.3.3.3 The Naive-Bayes Classifier

Introduction

A naive Bayes classifier is a simple classifier based on a probability model that
incorporates strong independence assumptions; namely that the presence or
absence of a given term in a document is completely independent of the presence

of absence of any other (non-identical) term.
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This assumption of independence is clearly false, and hence the classifier is
deliberately naive. Despite this over-simplified assumption, the naive Bayes
classifier works much better than would be expected from its simplistic design.

Probability Model
This section describes the mathematical foundation for the probability model
underlying the naive Bayes classifier. It is adapted from [28].

Bayes’ theorem relates the conditional and marginal probabilities of two

independent random variables:

plarB)p(B) = © (B14)P(4)
0p(4]B) = P(BIL(;Z;;’(@ (10)

where P(A) is the prior or marginal probability of A, P(A|B) is the
posterior probability of A given B, P(B | A) for a specific value of B is the

likelihood function for A given B and P(B) is the prior or marginal

probability of B and acts as the normalising constant.
The probability model for a classifier is a conditional model:
P(C|x1,...,xn) (11)

over a dependent class variable C with a small number of outcomes or classes
which are conditional on several feature (or term) variables Xx,. Using Bayes

theorem this can be written:

P(C)P(x,,....x, | C)
P(xl,...,xn)

P(C|x,,....,x, )= (12)

The denominator is constant and can be estimated from the frequency of terms in

the training data. The numerator is equivalent to the joint probability model:

P(C)P(x,,....x, | C)=P(C,x,,....,x,) (13)

Using repeated applications of the definition of conditional probability this can be

rewritten to:
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P(C,x,,...,x,)=P(C)P(x,,...,x, | C)

(C)P(x1 |C)P(x2 o |C,x1) (14)

(C)P(xl |C)P(x2 | C,x, )P(x3 |C,x1,x2)...

P
P

Because the model is “naive”, it is assumed that each feature x, is conditionally

independent from other features. Therefore:
P(xi|C,xj):P(xi |C') (15)
Hence the joint probability model in equation (13) can be rewritten as follows:

P(C,xl,...,xn)=P(C)()c1 |C)()c2 |C)

= P(c)ﬁ P(x,|C) (16)

. (17)

Note that the denominator is constant as previously stated.

Decision Rule
In order to turn the above into a classifier, the model above is combined with a
decision rule. The most common decision rule is the maximum a posteriori, which

picks the most probable hypothesis.

Because this looks at relative values rather than absolute values, the constant
denominator in equation (17) can be omitted:

classify(xl,...,xn) = argmax, P(C = c)ﬁ P(Xi =x;|C= c) (18)

i=1

This classifier can be easily adapted for text classification by using maximum

likelihood estimates of P(C = c) and P(Xl. =x,|C :c) over the training set:
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ﬁ(C :c):—N((j\]: C)
A 1+N(XA=xAC=c) (19)
P(Xi=xi|C=c)= LD
k+N(C =c)

where N(C :c) is the number of documents assigned to class C in the

training set, N is the total number of documents in the training set and k is

the number of features (i.e. the maximum value of /).

1 and k in the bottom equation act as smoothing constants to prevent the
predicted probability from reaching zero since this would cause equation (17) to
be equal to zero, therefore preventing any class missing just one feature from

being selected.

Note that the maximum a posteriori decision rule makes the classifier robust to
serious deficiencies of its underlying naive probability model - probabilities do not
have to be estimated correctly; the classifier's decision remains correct as long as

the correct class is more probable than any other.

Time Complexity

Training time complexity is of order 50D|LD +|C||V|) where |D| is the number of

documents in the system, L, is the average length of a document in D, C| is the

number of classes and |V| is the vocabulary size. [27]

Testing time complexity is of order 50C|L,) where L, is the average length of a

t

test document and |C| is the number of classes. [27]

2.3.3.4 The PrTFIDF Classifier

Joachims [31] presents a probabilistic analysis of the Rocchio Text Classifier
(described above; also known as a TFIDF Classifier) which makes the implicit
assumption of the Rocchio classifier as explicit as for the Naive Bayes Classifier.
Joachims identifies a number of problems which lead to “comparatively low
classification accuracy”, and proposes a probabilistic version of the Rocchio
Classifier, called PrTFIDF, which eliminates the inefficient parameter tuning and
design choices of the Rocchio Classifier.
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Probability Model
Naive-Bayes computes an estimate of P(Cj |d') (the probability that document d'

is in class C_/.) using equation (17) and by making a simplifying assumption of

independence.

The PrTFIDF Classifier uses a different means of estimating P(Cj |d'), inspired by

the “retrieval with probabilistic indexing” approach [41]. A set of descriptors X is
used to represent the content of documents. A descriptor x is assigned to a

document d with a certain probability P(x | d).

Using the theorem of total probability this can be written as:
Plc;1a)=Y Plc, | x,d)P(x] d) (20)
xOX

This can be rewritten using Bayes’ theorem:

Ale, 14)= 2 2 b et a) @

5 Pld|x)

To make this tractable, the simplifying assumption that P(d|C_/,x)=P(d|x) is
made:
Plc, 1d)= > Plc, |x)P(x|a) (22)
xO0X
This implies that P(C_/ |d) is approximated by the expectation of P(C_/ |x), where
x consists of a sequence of n words drawn randomly from document d . For

n=|d, P(C_/|d) equals P(C_/|x), but with decreasing n this simplifying

assumption (like the independence assumption in the naive-Bayes classifier) will

be violated in practice.

In the simplest case, n =1, equation (22) can be written as:
Plc,1d)= 3 Plc, |w)P(w|d) (23)
wlF

The two probabilities in this equation can be estimated as follows:
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TF(w,d) _ TF(w,d)
S TF(w.d)  |d|
wiOF
where |d| denotes the number of words in document d and TF(w,d) is the

P(w|d)= (24)

number of times a word w occurs in document d .

P(C_/ | w), the probability that C; is the correct category of d given that we only

know the randomly drawn word w from d, can be rewritten using Bayes’

theorem:

P (C_/ |W)_ P(W| < )P(C./)

- 2 PwiC)P(C)

coc

(25)

P(C_/.) can be estimated from the fraction of training documents that are assigned

to class C_/. :
. c\ \c\
Plc,)= <. c=d (26)
o2lel |
c'oc
P(w| C_/) can be estimated as:
R 1 R
Plwlc,)== 3 P(w|d) (27)
Jj aic;
Hence:
plw|c.)plc,)
PlC . |d')= / L xP(w|d' 28
( n ) V;ZP(W|C’)P(C,) (W| ) (28)
c'ac
Decision Rule
This can be turned into a classifier decision rule as follows:
P PI\C.
Hy rripr (d’) =argmax (W | C'/) (CI/) XP(W| d’) (29)

C,0C  wor ZP(W| C')P(C')

c'oc

Joachims then goes on to prove the relationship between PrTFIDF and TFIDF.
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Effectiveness
In testing the classifier showed performance improvements of up to 40%

reduction in error rate on five out of six tasks.

2.3.3.5 Hierarchical PrTFIDF Classifier

Introduction
Peng and Choi [32] propose a hierarchical classification algorithm which utilises
the hierarchical structure of categories to optimise both time complexity and

accuracy.

Training
Initially the classifier starts with a predefined hierarchy of categories or classes,
and training set of instances, each instance associated with one category in the

hierarchy:

Figure 17 Category Hierarchy

Initially a feature vector is generated for each category (equivalent to the
prototype vector in the Rocchio text classifier algorithm), by counting the number

of occurrences of each feature w to form the term frequency TF(w,C) and then

normalising this value using the formula:

_ 1+71F(w,C)
P(w|C)= S Tr(7.0) (30)
JOF
where F' is the set of all features in the current category C, F| is the

number of elements in set F and TF(w,C) is the total number of

appearances of a feature w in a category C.
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The feature vectors are then propagated up the tree from the leaf nodes to the

root using the following formula:

k
P(w| T) = ZP(W|SubTree,. )P(SubTree,. |T)+P(w| N)P(N | T) (31)

i=1
The formula effectively takes a weighted average of the feature vector of the node
N, and the feature vectors of it's k subtrees {SubTreel,...,SubTreek} , where
P(w|SubTreel.) and P(W|N) are calculated using equation (30).

P(SubTree, | T) and P(N|T) are calculated using equation (32) and serve to
weight the average.

0 if leaf
k

In(l + Ex(SubTree,
P(SubTree, | T)= 12:1: n(l+Ex(SubTree,))

p otherwise
> In(l + Ex(SubTree,))+ In(1 + Ex(Node)) (32)
i=1
1 if leaf
P(N|T)=4~ In(1 + Ex(Node) otherwise

Z In(1 + Ex(SubTree, )+ In(1 + Ex(Node))

i=1

where Ex(Node) is the number of instances in the current node and

Ex(SubTreei) is the number of instances in the sub-tree i.

Finally a uniqueness ranking is generated for every feature of every node, using

the features of the parent node as negative examples to determine this ranking:

P(w | Node)W(nodeAsSubtree)
P(w| ParentNode)

R(w| Node) = (33)
where Node is the current node and ParentNode is the parent of the
current node. W(nodeAsSubtree) is the weight factor assigned to the

current node when it is propagated to the parent. If a feature is unique to

one child of the parent node, this formula returns its maximum value, 1.
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Classification

Thanks to the feature propagation, checking all the parent nodes at a given level
of the tree is sufficient to identify which branch of the tree the new instance
belongs to.

Classification simply involves a breadth-first search of the tree, starting at the
root, each child node is considered and the search then recurses down the child
node with the maximum PrTFIDF probability using equation (28). The search
continues until it reaches a leaf of the tree as illustrated in Figure 18 (below).

Figure 18 Breadth-first search of Hierarchy

It is now known that the new instance belongs to one of the categories visited by
the search; and the PrTFIDF classifier is applied a second time for each category
visited, this time using the category’s feature vector as in equation (30), and only
considering features with a ranking of 1 in equation (33), which indicates a unique
feature. The node with the maximum PrTFIDF probability is where the new

instance is placed.

Time Complexity
The Naive-Bayes, Rocchio and PrTFIDF classifiers search all classes to identify a

potential match (thorough search), and so are of order z9(n) Comparatively this
classifier is of ﬁ(logn) in the case of a balanced tree. Additionally Peng and Choi.

quote an increase in accuracy compared to a thorough search algorithm (85%

accuracy with tree search cf. 78% accuracy with thorough search).
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2.4 Overview of HTML

HyperText Markup Language is a markup language designed for the creation of
web pages. It is text-based, but allows structure information such as headings,
paragraphs and lists to be defined and can also define semantic information about
a document.

A simple HTML document is shown below:

<htm >

<head>

<titl e>Exanpl e HTM. Docunent</title>

</ head>

<body>

<h1>This is a headi ng</hl>

<p>This is a paragraph. <b>This is bold. </ b></p>
</ body>

</htm >
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2.5 Overview of HTTP

This section presents a brief overview of HTTP, the underlying protocol that drives
the world-wide web. Additionally some more advanced points relevant to this
project have been included.

HTTP stands for HyperText Transfer Protocol and is the network protocol used to
deliver files and data over the world-wide web. The first version was developed in
1990 at CERN by Tim Berners-Lee.

HTTP was originally designed to transmit HTML documents, but it is now used to
transmit all types of files.

2.5.1 Protocol Overview

The standard method of addressing files is to use a Uniform Resource Locator
(URL) to identify a location on the server. This is a specific type of Uniform
Resource Indicator (URI). URIs are typically of the form service: paraneters.
URLs are typically of the form http://host: port/path/file.htnm . Often the port
is omitted and defaults to the standard HTTP port, 80.

HTTP generally communicates over a TCP/IP socket connection and is
connectionless and stateless. It is based upon a request/response paradigm, and

in its most basic form consists of the following steps:

1. Client establishes a TCP connection to the server host and port given in the
URL
Send the HTTP Request to the server
Receive the HTTP Response
Close the TCP connection

The HTTP Request consists of a request line specifying the operation (most
commonly GET, HEAD or POST), requested path and protocol version. This is
followed by zero or more request headers specifying additional information and
then a blank line. In the case of a POST request the headers are followed by data.
A typical request might look like this:

GET /test.txt HITP/ 1.1
Host: www. cs. manchester. ac. uk
User-Agent: Mdzilla/4.0 (conpatible; MSIE 6.0; Wndows NI)
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The HTTP Response is structured similarly, with the first line specifying the
protocol version, a numeric status code and description. This is followed by
response headers, a blank line and then the content of the response. A typical
response might look like this:

HTTP/ 1.1 200 K

Date: Fri, 20 Feb 2004 13:31:00 GMI
Server: Apache/1.2.0

Cont ent - Type: text/plain

This is a test document.

Note that the numeric status code is machine-readable and the first digit
corresponds to the category of response (for example 2xx indicates a success).
Additionally a MIME Type is returned (in the Content-Type: header) which
identifies what format the document is in, for example text/plain, text/html,
application/msword or application/pdf. MIME Types are widely used to identify file
types, and are also used for email attachments and by operating systems.

2.5.2 HTTP 1.1

The initial version, HTTP 0.9 only supported raw data transfer, and rapidly became
a de-facto standard on the Internet. The first official version, HTTP 1.0 was
defined by RFC 1945 in 1996 and added content type negotiation.

Several major problems existed in this version and in 1999 HTTP 1.1 was defined
by RFC 2616. Improvements include:

« Persistent connections: Most HTML pages reference other objects such
as images; under HTTP 1.0 a new connection is created for each object so
a page with N referenced objects requires N+1 connections. Setting up a
new TCP/IP connection causes an unnecessary overhead; HTTP 1.1 uses
persistent connections which allow several requests to be sent over one
connection.

« Hostname identification: A Host: header is added to all requests
allowing one IP address to be allocated to multiple domain names.

e Proxy support: HTTP 1.1 adds additional headers to help proxies
determine how long to keep documents in their cache.

« Byte ranges: The client can specify a byte range to be retrieved instead of

a whole document.
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- If modified since: The client can specify a time and date in an If-
Modified-Since: header. The server responds as normal except in the case
that the request results in a normal 200 (OK) response, and the page has
not been modified since the time specified where, a 304 (Not Modified)
response is returned with no data. This enables bandwidth consumption to
be reduced by not fetching pages already cached locally unless the remote
copy has been updated.

« Compression: Compression of documents can be negotiated between
client and server.

» Pipelining: Several requests can be sent on a persistent connection
without waiting for responses. The responses can then be sent together,

maximising packet sizes and increasing network efficiency.

‘-Ql-les,t

"_,tﬁg}{}d{/
\E%,E\
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Figure 19 Pipelining [29]
2.5.3 CGI Scripts

A CGI script is a program that runs on the web server and generates a dynamic
response to the client’s request. A CGI script runs as a separate process to the
web server and interfaces with the web server via the Common Gateway Interface
(CGI) standard [40]. A serviet is a similar concept, but runs in the web server
process, increasing the efficiency of requests since no additional processes need

be created to serve requests.

2.6 Summary

This section has presented a detailed overview of supervised learning classifier
algorithms related to this project, in addition to a broad overview of the
underlying theory and background. Particularly of note is the Hierarchical PrTFIDF
classifier which appears to be ideal for the requirements of this project.

In addition an overview of protocols and technologies related to the markup and

delivery of internet and intranet documents has been given.
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3 Design Overview

3.1 Introduction

This chapter provides a high-level overview of the design of the system, which
aims to fulfil the goals set out in section 1.3. Details of the high-level design
decisions made are given in addition to the rationale behind these decisions.

The aim was to design a system which was as close as possible (within the
timeframe available) to a production system. Due to the potentially huge scope of
the project and the limited available time in which to complete it, strong emphasis
has been placed upon developing a modular architecture in order to facilitate the

easy extension and modification of the system.

3.2 Requirements

3.2.1 Introduction

This section sets out high-level requirements to constrain the design process and
discusses the thought process underlying the decisions made. The requirements
aim to fulfil the goals set for the project, and are scoped so as to be realistically
achievable within the time available.

Since the project is scoped to focus purely on document classification, clearly a
Text Mining algorithm must be core to the solution. As such the discussion of

requirements will use the steps set out in Figure 10 as a framework.

Requirement: The system should be made modular wherever possible to

facilitate easy extension and modification.
3.2.2 Document Acquisition

Introduction

The Document Acquisition process deals with acquiring documents from a
multitude of potential sources and converting them into a text-based format which
the Text Mining process is able to understand.

Page 45



A Personalisable Hierarchical Intranet Document Categoriser James Furness
Document Delivery

The most common means of intranet document delivery is HTTP (Section 2.5). In
the case of web crawlers operating over the internet HTTP would be the only

mechanism guaranteed to be available to retrieve remote documents.

In the case of an intranet document management system this is not necessarily so
due to the lower number of web servers involved (often only one) and also the
fact that all web servers would most likely be under the administrative control of
the same entity responsible for operating the document management system.
Hence it is plausible that any necessary means of acquiring documents could be
made available to the document management system, for example documents

could be accessed through a file share.

An additional possible method for acquiring documents would be to build a custom
server which runs on the web server and transmits documents to the document

management system via a custom protocol.

A brief comparison of three possible methods for delivering documents to the

acquisition component of the document management system is presented below:

HTTP File Share Custom Server
Cross-Platform
Yes No Possible
Compatibility
Access to underlying
Partial Yes Yes
filesystem metadata
Incremental Transfer HTTP/1.1 Yes Yes
Dynamic Content Yes No Difficult
Directory Enumeration No Yes Yes
Pull/Push Pull Pull Both

Cross-Platform Compatibility: HTTP has the advantage that it is implicitly
cross-platform compatible; any intranet web server can be accessed via HTTP. A
file sharing protocol is not guaranteed to be available on all web server

configurations and a custom server would require porting to all platforms in use.

Access to underlying filesystem metadata: HTTP servers generally provide
the last modified date with the response, however not all servers obtain this from
the file on disk, and in systems with dynamically generated content the last
modified date is generally set to the current time. File sharing protocols generally
provide full access to filesystem metadata and make available the creation,
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modification and last-accessed dates. Similarly a custom server would have access

to any filesystem metadata available.

Incremental Transfer: HTTP/1.1 provides an If-Modified-Since: header which
allows only documents which have changed to be retrieved. However every
document must be polled individually. Not all web servers support this header and
dynamically generated documents generally ignore this header. In the case of file
sharing protocols or a custom server, incremental transfer is supported through
the access given to the underlying filesystem data - this can be polled and the
document only read if it has been updated.

Dynamic Content: HTTP servers generally support dynamic content in the form
of servlets or CGI scripts, where instead of returning a file from disk, a program is
run and the output of this program is returned, allowing greater interactivity with
the user since user input can be taken into account. The user cannot generally tell
whether content returned is dynamic or static since the source of the content is
obscured by the HTTP layer, and therefore dynamic content requires no special
treatment.

File sharing protocols provide no execution support, and attempting to retrieve a
document which would be dynamically generated over HTTP would return the
source code or binary source of the program responsible for generating the page.
Even with the source, execution would be difficult since CGI scripts or servlets are
designed to run over HTTP, and on the same platform and configuration as the
web server. A custom server could potentially execute CGI scripts or servlets but
it would be difficult to account for all possible configurations of scripts without

extensive manual tuning.

Directory Enumeration: HTTP servers generally provide no directory
enumeration for security reasons. In cases where directory listings are provided,
this is in a HTML format depending on the web server and its configuration and
therefore cannot be parsed without extensive manual tuning. File sharing
protocols implicitly support directory enumeration, and a custom server could
easily implement directory enumeration.

Without directory enumeration support the only reliable way to discover new HTTP
documents is using a ‘web spider’ which ‘crawls’ documents and identifies any new
links present in them. Newly discovered links are queued and subsequently
visited. Eventually a spider should be able to find all pages providing there is a link
to the page (i.e. when visualised as a graph of pages as nodes and links as arcs,
the spider will be able to discover any page in a section of the graph connected to

the section in which it began crawling).
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Pull/Push: HTTP and File Sharing protocols are implicitly Pull based - documents
must be requested. A custom server could implement a publication/subscription
model allowing document management systems to register to receive updates

when a document has been modified or created.

HTTP has huge advantages in terms of cross-platform compatibility and reduced
maintenance despite the advantages of the other methods. Additionally some of
these advantages such as bandwidth reduction are negated in an intranet
environment where it can be assumed ample bandwidth is available to counteract

the lack of incremental transfer.

Requirement: In order to support a full range of potential delivery methods, a
generic format for a document acquisition plugin should be defined. However in
the case of the initial implementation of the system, HTTP should be the default

acquisition method.

Document Decoding

Once the document has been acquired, it may be in a number of markup formats.
Common formats in use on an intranet include HTML (Section 2.4), Adobe Acrobat
(PDF) and Microsoft Word.

Requirement: The document decoding stage of the system should have a
capability to detect the format of the document, and decode it into a generic
format upon which the Text Mining process is able to operate. In the initial
implementation of the system the input format will be limited to HTML.

Conversion to a generic format implies the loss of markup data; this loss should

be minimised if possible.
3.2.3 Document Transformation

Introduction

The raw text of the source document is now available to the system. This text
must be transformed into a consistent internal representation before it can be

classified.

Text Pre-Processing

The pre-processing stage generally involves attempting to conflate the words in

the document such that words of a similar meaning in other documents will be
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considered equivalent. The most basic form of pre-processing is stemming
(Section 2.2.3.3), often combined with stoplist elimination (Section 2.2.3.2);
however more advanced forms are possible such as converting words to
hypernyms and meronyms (Section 2.2.3.4) or alternatively adding these terms to
the document.

Requirement: The pre-processing stage of this system should support pre-
processing components which are able to change, remove or add terms. The
initial implementation should use stoplist elimination and a simple Porter

stemmer.

Text Transformation

The conflated text is then generally tokenised if the system’s internal

representation uses the “bag of words” model.

This system will be constrained to use the “bag of words” model internally since it
provides a good processing speed and reduced storage space through the loss of
positional data whilst retaining word frequency data.

Requirement: The text transformation state of this system should allow a user-
defined tokenisation algorithm to be used to split terms into a “bag of words”
representation. In the initial implementation of the system this algorithm should
split words into tokens by punctuation or spaces. Hyphenated words should not
be split.

Feature Selection

The conflated and transformed text is then statistically analysed; unimportant
terms may be discarded during this stage.

Requirement: Since this is the component the text mining components will
build upon, its design will be fixed to ensure consistent data. It should operate
by calculating weights for each transformed/collated term in the document. TF,
TF-IDF and TF-LogIDF weights should be stored for each term.

3.2.4 Document Classification

Introduction

Once the documents have been acquired and transformed into a consistent

internal representation they must be classified.
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The goals of the project require the classification to be hierarchical, mostly
automated and also for it to be personalisable by users of the system.

Classification Algorithm

A number of classification algorithms have been presented in section 2.3. As
shown in Figure 12, learning classification algorithms can be grouped into

supervised and unsupervised learning classifiers.

As stated in section 2.3.2, unsupervised classifiers (or clustering algorithms) are

by definition not trainable and hence unsuitable for the user to personalise.

Even if the personalisation goal of the project is ignored it can be seen that an
unsupervised algorithm is unlikely to be as useful as a supervised algorithm since
the unsupervised algorithm is designed to group data together according to
patterns that it discovers whereas the intended use of the system is to be trained
by its administrators to group documents as they see fit.

However there is one point at which an unsupervised algorithm would be useful -
in the setup of a system initially containing a large number of documents (this is
known as a semi-supervised classifier or bootstrapping). In this case it would help
the system administrators to have a hierarchy automatically generated which they
can subsequently tune to their requirements. However this is not a core

requirement and would only be of use during the initial setup of the system.

Hence the choice of the main classification algorithm has been constrained to
supervised learning algorithms. Of the algorithms presented in section 2.3.3, the
Hierarchical PrTFIDF classifier is the only classifier inherently supporting a
hierarchy, and utilising this information to decrease the time complexity of the
classification process.

The Rocchio Text Classifier is efficient but has difficulties coping with disjunctive
categories, which would require the user to be careful when creating categories.

The k-NN classifier has high variance and low bias, which means it has a tendency
to overfit itself to the data and have difficulty classifying new examples slightly
different to the training data. A naive-Bayes classifier has low variance and high
bias and has the opposite tendency; to accept examples as part of a class they
should not be.
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Overall, the hierarchical PrTFIDF classifier seems to be best suited to the design
goals of the system since it is inherently hierarchical and it has a much faster
training time than most *flat’ classifiers because it uses the hierarchy to reduce the
number of comparisons from n to log n on average. It is also based upon the
PrTFIDF classifier which has a strong probabilistic foundation and in tests [31] was
found to be more accurate than the TFIDF classifier in almost all cases, and
generally more accurate than the naive-Bayes classifier especially in examples
with low amounts of training data (which would make the system easier to
maintain). In tests of the Hierarchical PrTFIDF classifier, its classification accuracy
was quoted as being better than PrTFIDF [32].

Requirement: The system should use a hierarchical PrTFIDF classifier to
classify documents. It should support the later addition of a clustering algorithm
to bootstrap the initial classification of documents.

Hierarchy Personalisation

A generic hierarchy is defined by two relations, membership of an instance in a
category and inclusion of a category in another. In a generic classification system,
a canonical classifier and hierarchy is provided which the user sees by default. If
the user wishes to personalise the system they must reject one or both of these

relations:

Definition Personalisation
Membership | ‘is-a’ Reject membership relation but accept
relation Relates instance to topology. Must reject/replace canonical
0 category classifier.
Inclusion ‘a kind of Accept membership relation but reject
relation Relates category to other topology. Accept canonical classifier but
U categories remap topology.

The simplest case is rejection of the inclusion relation - this simply requires a one-

to-one mapping between the canonical topology and the user topology.

More difficult is the rejection of the membership relation - this implies the user
wishes to classify documents differently to the system defaults and hence the
canonical classifier is no longer of use to the user. Note that if the user also wishes
to reject the inclusion relation this does not add to the difficulty since once the
canonical classifier has been rejected the replacement classifier can be applied to
any hierarchy desired.
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If the membership relation is rejected, the scalability of the system is affected
because instead of providing one classifier for n users, between 1 and n classifiers

must be provided.

By providing many classifiers, the maintenance of the system becomes more
complex. Although a user may create their classifier and train it to satisfaction, it
will require occasional maintenance from time to time due to concept drift. This is
a term used in data mining referring to changes over time in the concepts
associated with terms, for example new fields of research would warrant the
addition of new categories into a system and certain terms would become
associated with the new categories. For example, “"Clinton” was once a good term

association with “president of the united states”; now it is not. [27]

One idea that was initially considered was to try to provide some kind of means to
connect the canonical hierarchy to each user’s hierarchy. For example in a naive-
Bayes classifier it would theoretically be possible to modify the classifier in
equation (18) to take into account both the terms in the document, but also the
position of the document in the canonical hierarchy. For example:

classify(x,....,x,) = argmax, P(UC =¢)PUC =¢| GC = ¢)[| P(X, = x, |UC =¢)(34)
i=1

This equation aims to classify documents but also take into account their canonical

classification. UC represents the user category assigned to the document and GC

represents the canonical category assigned to the document. Initially:

1 if c=UC=GC
P(UC=c¢|GC=c)= 0 hermise (35)

Initially this is 1 where the user category matches the global category and
approximately (but not equal to) 0 in all other cases. As the user moves
documents around between categories these probabilities would be adjusted by
the training component and once the user had broken a canonical category up
sufficiently these probabilities would all be approximately equal and hence would
become insignificant compared to the product on the right side of the equation,
effectively disconnecting the user hierarchy from the canonical hierarchy.

However this is more based upon hunch than theory, and also raises additional
questions as to how the topology would map onto the canonical topology when

categories can be added, deleted or moved in both. Solving these problems would
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take more time than is available due to the already complex architecture
proposed.

A simpler and more reliable solution is proposed - to allow any user wishing to
customise their view of a hierarchy to clone the hierarchy and then alter the
training data and topology themselves. This is simpler to implement and provides

sufficient personalisation capability for most user’s needs.

One problem with this personalisation approach is that having potentially one
hierarchy per registered user means that every new document will have to be
classified several times; the complexity of the classification algorithm becomes

critical. Fortunately the hierarchical PrTFIDF classifier is very efficient.

Requirement: Any user of the system should be able to clone a hierarchy they
are viewing and personalise it by altering the topology and changing the training
data to alter the classification of documents. One hierarchy should be flagged as
the canonical or global hierarchy which is the default view. Users should be able
to make their hierarchy public so that other users can view it if desired.

3.3 System Architecture

3.3.1 Introduction

As stated in the requirements the system is to be made as modular as possible to
facilitate easy modification and extension.

This section presents an architecture which aims to fulfil the requirements set out

in the previous section whilst retaining as much modularity as possible.
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3.3.2 Document Acquisition

Document Submission

The manual document submission and the automatic document crawler plugins
support the entry of documents into the system. The plugin should specify an URI
to uniquely identify the document in the system and the MIME type of the
document. Documents should be identified by the URI and the ID of the plugin
that submitted them.

MIME Type Decoder

The system should poll all loaded document decoder plugins until it finds one
which accepts the document’'s MIME Type (section 2.5.1), or raise an error if a
plugin could not be found.

The decoder plugin selected should then convert the document into plain text and
call the tokeniser plugin in order to identify token boundaries in the document. It
then passes an array of term objects onto the filter/text transformation plugin

chain.

The reason that the tokenisation is performed by the decoder rather than plain
text being output and tokenisation occurring after the decoder is to allow the
decoder to attach metadata to the term object, for example formatting metadata
(bold/title etc). A filter/text transformation plugin that understands this metadata

can use it to alter term bias or act upon the information in some other way.

Tokeniser

The tokeniser plugin accepts text input one character at a time from the decoder
plugin and returns a Boolean value identifying whether the character is a term
boundary. The decoder plugin uses this information to break the document up into

an array of term objects.
3.3.3 Document Transformation

Filter/Text Transformation Plugin Chain

All text transformation and pre-processing operations are essentially accomplished
by the addition, deletion or modification of the terms in a document. Hence this
stage of the processing is represented by a filter chain. Plugins are placed into this
chain in an explicit order and each plugin has access to an ordered array of terms

and can add, modify or delete these as it sees fit.
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The term object contains the string that it represents, a bias value (which defaults
to 1) and an optional term context object that can be attached by the decoder
plugin to provide additional metadata about the term. If the filter plugin
understands the attached context object, it can use the additional metadata.

Examples of filter plugins include:

» A format weighting plugin could use knowledge of the term context objects
attached to terms by a HTML decoder plugin to double the importance of
terms which were bold by multiplying their bias by 2.

» A stemming filter plugin could replace terms with stemmed versions.

« A WordNet filter plugin could replace terms with hypernyms or it could
append hypernyms and meronyms to the array of terms

« A n-gram generator plugin could generate all collocated n-grams in the
document (All possible pairings of words immediately next to each other).
It could append either all of these to the array of terms, or it could be more
space efficient by appending only n-grams known to be meaningful.
Alternatively it could replace the terms list with a list of n-grams,
converting the internal representation from the “bag of words” model to
the “bag of n-grams” model

Document Summariser

The document summariser component counts the number of occurrences of each

term in the array of terms.

It also averages the bias associated with each term. Note that term bias and term
frequency are different terms; term frequency being the proportion of the
document made up by the term and term bias being the average bias value for
the term. For example a term which occurred 2 times in bold and 1 time in normal

text would (with a format weighting plugin assigning double importance to bold

text) have a summarised bias of *2*2=1.6.

Term count, Term frequency, TF-IDF and TF-LogIDF weightings are then
calculated for each term and the data added to the database. Note that term
frequency, TF-IDF and TF-LogIDF values are not required by the classification
algorithm used but are calculated for the use of search plugins or clustering
algorithms used to bootstrap the classifier.
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3.3.4 Document Classification

Classifier

The classifier classifies documents into all hierarchies in use with a hierarchical
PrTFIDF classifier.

Web-Based Browsing Interface

The web-based browsing interface allows users to browse any of the hierarchies
available. It also allows users to clone any available hierarchy and if the hierarchy
is owned by the user it allows modification of the topology and pinning/unpinning
documents to a particular point in the category (pinned documents constitute the
training set for the classifier)

3.4 Summary

An architecture has been described for a modular, flexible and extensible

document management system.

The document acquisition architecture allows plugins to be added without change
to the core system to support the gathering of documents via multiple delivery
methods and to allow the decoding of multiple formats of document.

The filter plugin chaining system allows a great number of text transformation and
pre-processing algorithms to be used without change to the core system.

The architecture fulfils the goals set out in 1.3 and provides a browsable document
hierarchy to which new documents are automatically added and classified. It
supports user-personalisation through the cloning and modification of the
hierarchy. The classification algorithm in use is extremely efficient and also robust

to poorly created hierarchies (for example disjoint categories).
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4 Detailed Design

4.1 Introduction

This chapter builds upon the requirements and architecture set out in the high-
level design overview (chapter 3). It details the tools that were used to implement
the system, the rationale behind major design decisions that were taken and the

problems that arose during implementation.

4.2 Implementation Tools and Techniques

This section provides an overview of the tools and techniques that should be used

in implementing the system.

Microsoft .NET Framework 1.1

Microsoft’'s .NET framework is a development platform similar to Sun
Microsystems’ Java. It provides a number of programming languages (such as C#,
Visual Basic .NET, J#, C++, Perl, Python etc) which are compatible with a defined
Common Language Specification (CLS).

These languages are compiled into Intermediate Language (IL), which is itself a
language and is both (source) language and platform neutral. An application is
then distributed in IL format, which can then be run by a Just-In-Time (JIT)
compiler which converts the IL into platform specific code. JIT compilers are

available for a number of platforms.

The primary reason for use of the .NET framework was that this is the preferred
development platform of EDF [10] and hence the resources they were able to
provide for the project are compatible with .NET.

Additionally .NET has a number of advantages over Java, for example the class
library provided with .NET is better developed in some areas, for example it
supports asynchronous socket I/O and provides a ThreadPool to optimise some
multi-threaded applications. Also despite the .NET JIT currently being available for
less platforms, it has a major advantage in that multiple programming languages
support the CLS allowing programmers to choose the language that suits them,
whereas Java only supports one language. .NET also has better support for SOAP
(Simple Object Access Protocol) web services than Java.
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The choice of which language to implement in is entirely down to personal taste
since all CLS compliant languages are capable of producing identical IL after
compilation, and because all languages use the same Base Class Library (BCL),
the helper functions/classes available are identical. In this instance C# was chosen
as the implementation language.

.NET Thread Pool
The .NET framework Thr eadPool is the basis for all asynchronous programming in
the .NET framework.

Its operation is simple - it provides a pool of threads which are able to execute
any function specified as a work item. Submitted work items are queued, and a
pool of threads (usually 25 threads per processor) continuously poll for queued
work items and execute any work items found.

{ !

Thread 1

Reguests queus

\ Thread 2 )1

Thread pool

Figure 21 ThreadPool illustration [37]

This has a huge advantage by eliminating the overhead of threads starting up and
shutting down, especially useful if the work item is a very short function in which
case starting a thread just for this is very inefficient. It also removes the burden of
thread management from the programmer. The thread management built into the
Thr eadPool optimises the number of threads to ensure enough threads are
running to maximise CPU usage but not so many threads that a lot of time is
being wasted in context switches.

Another huge advantage of the ThreadPool is the optimisation of wait operations.
Traditionally any multithreaded program needing to wait for events would use
some form of sleep call to suspend the thread. This left a thread running and
using up system resources whilst doing nothing. This is particularly wasteful in

network I/O operations where a number of threads may all be suspended for a
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long time and using system resources. The ThreadPool has the capability to queue
wait requests, and execute them once the wait has completed. In the case of a
server this increases capacity and also neatly sidesteps the problem of needing to

limit the maximum number of connections to prevent denial of service.

All I/0 waits (for example reading documents from remote web servers) use the
ThreadPool. Additionally the ThreadPool is used wherever possible for background

execution of tasks.

Microsoft SQL Server 2000

Microsoft SQL Server 2000 was chosen as the backend DBMS. This is because this
is the database used by EDF [10] and hence they were able to provide access to
this for testing purposes. Data access is compartmentalised into a Data Access
Layer (DAL), so switching to an alternative DBMS would only require changes to
the DAL code.

SQL Server stored procedures are batches of T-SQL statements (T-SQL provides
ANSI SQL functionality with some enhancements such as flow control statements).
An effort has been made to use these for performance-critical operations, since
they provide faster performance because the execution plan for all queries inside
the procedure are precompiled (although this can be a hindrance if they are not
recompiled if the database statistics, i.e. relative sizes of tables and index
densities, change significantly). Stored procedures are also faster because the
code executes on the database server, this means that only the parameters and
the results are sent over the network, all processing happens on the database

server.

Subversion

Subversion [35] was chosen for source code control. This is a greatly improved
version of Concurrent Versions System (CVS) and provides an additional backup of
code in addition to a full revision history allowing changes to be reverted without
requiring code to be rewritten. Code was stored in the EDF [10] Subversion
repository.

Coding Standards

Microsoft’s Internal Coding Guidelines [36] were chosen as the standard for source

code formatting to ensure all code is presented in a consistent format.

Particular attention was paid to including XML documentation comments on all

public methods and properties of public classes. This both allows automatic
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generation of help pages for the system’s API and also allows auto completion and
pop-up help for programmers using the API.

Also try/ cat ch blocks with appropriate error logging were used as frequently as
possible, particularly around calls to user plugins to prevent errors in these from

causing a fatal error in the system.

4.3 Portability

The system should be developed in pure .NET with no native code. This allows the
system to be used on any platform with a .NET JIT.

4.4 Design Highlights

This section presents an overview of the major achievements of the design and
implementation of the system. For a more detailed account of the implementation
of the system please refer to the implementation details section in Appendix 0.

4.4.1 System Configuration

The system supports configuration through .NET’s XML application config. This
supports storage of basic name/value pairs. The dagama configuration manager
supports reading of configured settings, the name of each setting is prefixed by
the fully qualified name of the class it refers to in order to ensure that the names
of plugin configuration settings do not conflict. A sample configuration file is

shown below:

<?xm version="1.0" encodi ng="utf-8" ?>
<configuration>
<appSettings>
<add key="Dagana. Acqui r e. Decoder Pl ugi n. Decoder Manager . Regi st er edPl ugi n0"
val ue="Dagama. Acqui r e. Decoder Pl ugi n. Text Ht M . Text Ht m Decoder " ></ add>
<add key="Dagana. Acqui r e. Decoder Pl ugi n. Decoder Manager . Regi st er edPl ugi n1"
val ue="Dagama. Acqui r e. Decoder Pl ugi n. Text Pl ai n. Text Pl ai nDecoder " ></ add>
</ appSettings>
</ confi guration>

4.4.2 General Architecture

The architecture is designed to be as modular as possible; in particular all data
access code is separated into a Data Access Layer. This ensures that switching the
database backend of the system only requires rewrites to the DAL. All
communication between the DAL and other parts of the application is achieved
through abstract data types which are not specific to the database used.
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The architecture is also designed to be as robust as possible; particularly around
plugins where careful error handling is used to ensure that errors in plugins are

logged but do not cause a fatal error in the whole application.

The plugin architecture is a compromise between efficiency and extensibility, and
the use of plugins prevents some possible optimisations of the system which
would require each component’s interface to be less generic (and hence not a
plugin) in order to optimise data structures and operations performed. However,
every effort has been made to maximise the efficiency of the architecture. For
example when filter plugins process the terms array, instead of copying the array
and passing it to each individually, a pointer to an array modification interface is
passed to each which enables them to seek through and modify the array with

constant memory usage.

The document summariser which converts from a list of terms to the internal “bag
of words” representation uses the quick sort algorithm to sort the list
alphabetically and then loops through this sorted list to enable the summarisation
to be performed in-place with constant memory usage and without the
requirement for hash tables.

Performance monitoring is provided through the Windows performance counters
API. This allows the current state of the application to be monitored both locally

and remotely. It also allows this data to be logged for later replay.
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. AT R Y B Y
L4 L
: IR
1}
Lask 0.000  Average 13,214 Minimum 0,000 Maximum 30,556
Duration 1:40
Color | Scale | Counter Instance | Parent | Object Computer
1,000  Average Task Duration == Dagama Concurrent Connection  11PGO04
1,000 Current number of tasks executing - -- Dagama Concurrent Connection {1PGE004
1.000  Tasks Executed | sec - -- Dagama Concurrent Connection  \\PGO04

Figure 22 HTTP connection performance counters
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Classes requiring resources to be released or specialised cleanup implement the
| D sposabl e interface which is a standard .NET interface which allows resources
to be guaranteed to be released at a specific point rather than depending upon the
garbage collector (which is “lazy” and therefore cannot guarantee when resources
will be released, and also does not guarantee a class destructor function will ever
be called).

A number of helper classes are provided by the framework. These are used in
various other parts of the application. For example:

+ Concurrency Limiter: This class supports the limiting of the number
threads executing a particular task. This is achieved by having a counter
which is checked and incremented/decremented inside a nmut ex block (to
ensure only one thread can access the counter at a time). If the maximum
number of slots are currently in use, the mut ex is released and then the

thread blocks on an Aut oReset Event object.

When a slot is freed, the Aut oReset Event object is signalled, releasing
exactly one waiting thread which then fills the slot. The advantage of this is
it maximises efficiency (compared with using a timer to repeatedly sleep
then poll for a free slot), the thread simply sleeps until a slot being freed
wakes it.

« Continuous Processing Thread Base Class: Base class for a thread
which is designed to repeatedly execute a work function which returns true

if work was found or false if it was not.

If false was returned, the thread sleeps using a truncated binary
exponential back off algorithm (1 second, 2 seconds, 4 seconds, 8 seconds
etc) up to a defined maximum. The purpose of this is to reduce the load if
the task that is continuously being executed is not doing anything (for
example polling for documents to be classified but none are being added).

« Periodic Processing Thread Base Class: Base class for a thread which is
designed to execute a work function every n seconds. Rather than sleeping
for n seconds after the work function has been executed, the duration
which work function took to execute is calculated, and the thread sleeps n

- duration. This ensures that the work function runs exactly every n
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seconds where possible, if the function takes longer than n seconds it is run

continuously.

+ Rate Limiter: This class is designed to limit the rate at which a task is
being executed. It achieves this by monitoring the number of tasks
executed over a given window, for example enforcing a maximum of 5

tasks/minute averaged over the last 10 minutes.

If the current rate is over the acceptable maximum, the thread sleeps until
the next logged task run is due to be expired (i.e. has become older than
the current time minus the window length), then recomputes the average
rate and sleeps again if necessary. The average over data currently within
the window is recomputed within a mut ex block for thread safety.
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4.4.3 SQL Server Data Access Components

Schema
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Figure 23 SQL Server Database Schema

The SQL Server schema is shown in Figure 23 (above). The function of each table

is as follows:

+ Document contains one row per document in the system.

« DocumentTerm contains one row per term in each document.

» Hierarchy contains one row per hierarchy in the system, each row has a

reference to the hierarchy’s root node.
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« HierarchyNode contains one row per node in each hierarchy.

+ HierarchyNodeDocument associates documents with hierarchy nodes.
| sPinned is set to 1 if this document has been pinned (is part of the
training set)

« HierarchyNodeTerm contains statistics computed over the training set by
the hierarchical PrTFIDF classifier.

» Stopword contains the stopword list.

+ Term contains all terms known to the system.

« TermStatistics is a vertical partition of the Term table and contains
statistics computed about each term.

» User contains details about users of the system.

« WebCrawlerDocument contains the web crawler plugin’s crawl queue

and the status of all documents known to the web crawler.

The SQL Server Data Access Components use transactions where appropriate to
ensure that updates occur atomically. In some places due to high concurrency the

locking and transactions are tuned manually for maximum throughput.

The following sections give an overview of the more complex database algorithms

designed and problems that arose during design and testing.

The Data Access Components are a key factor in the efficiency of the system since
all operations depend upon the underlying database for storage and retrieval of
data. The efficiency with which this data is stored and (most importantly)
retrieved directly impacts the efficiency of the system.

In designing the database structure and algorithms involved, the aim has been to
maximise the efficiency of browsing through the system. As a result, all
information regarding document vectors, category vectors, classification decisions
etc. has been cached where possible. Updates of this cached information are
designed to be as efficient as possible by only updating the minimum amount of
data required by a change. Calculation algorithms have been converted from
mathematical equations to relational algebra where possible to utilise the highly
optimised processing capabilities of the underlying relational database

management system.

Note that the following sections refer to term statistics and document term
statistics. The difference between these is that term statistics refers to the

calculated document frequency and inverse document frequency of terms over all
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documents, document term statistics refers to the TF-IDF and TF-LogIDF

weightings calculated for a term specific to a given document.

Issues with concurrency on Terms table

Particular problems were found with high levels of concurrency on the Ter mtable -
term statistics update threads are continuously updating the term statistics,
document term statistics threads are continuously reading the term statistics and
document processing threads are continuously both looking up term IDs for terms
found in the document and adding new terms not currently existing in the
database.

The major problem with this table in particular is that unlike other tables, where
generally only one thread is trying to access the row at a time (a document has to
be inserted into the system before the TF-IDF weightings can be calculated etc),
with the Ter mtable a number of threads are liable to be accessing the same row
at the same time because most documents will use the same words. As a result of

this the locking had to be controlled by vertically fragmenting the Ter mtable.

This ensures that the term lookup part associating strings with TermID values is
read-only (and occasionally an insert occurs when a new term is found).
Additionally instead of updating term statistics every time a document is added or
updated in the system (which would require lots of continuous updates to the
table by all document processing threads), one thread is used to periodically re-
calculate term statistics (using a stored procedure) for all terms in the database. If
the term statistics differ from their previous values, a date updated timestamp is
set to the current time.

The procedure which performs inserts into the Ter mtable also inserts a stub row
into the TernStati stics table with just the term ID and all other values nul | to
cause the term statistics update procedure to process this term - this also means
that the term statistics update procedure never performs reads on the Ter mtable
itself, reducing locking conflicts. There is potentially a delay between statistics
updates where a newly added term in the TernBtati sti cs table has no statistics
present, in this case the missing term will be ignored by the classification process
and the document will be initially classified, once the term has been propagated
into the TernGt ati sti cs table its newer timestamp will cause the document to be

re-classified taking the term into account.
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Additionally the term statistics update process had to be further modified to
update one term per execution rather than updating all terms in one execution.
This is because with large numbers of documents and terms in the system the
execution was taking longer than the command execution timeout. Rather than
setting this to be infinite and risking problems due to a command getting stuck in
an infinite loop or the network connection inadvertently becoming disconnected
and causing the command to wait forever, the command was broken up into
smaller chunks of work. This was achieved by setting a variable to the start time
of the process, and repeatedly re-executing the stored procedure passing the start
time as an argument. This also splits each update into a single transaction, and
ensures that row locks are released immediately after the row has been updated
(at the expense of a slower query). The stored procedure updates only rows which
were last updated before the stated timestamp, and execution eventually stops

when there are no rows matching this criteria.

Another problem occurred during the initial setup of the system, due to a large
number of new terms being discovered in the first 10-20 minutes the system is
running (since it is building up its core vocabulary), lots of locking timeouts
(where the database waits longer than a specified timeout to obtain a lock, so
gives up) were occurring on inserts to the Term table. To overcome this error
handling was added to catch this type of error and sleep for a random delay
between 10 seconds and 1 minute, and then retry. This process is repeated up to
3 times before finally raising an error.

Document Term Statistics Update Algorithm

The process of performing document term statistics updates is designed to be as
efficient as possible by using timestamps. Every execution looks for one document
term with invalid TF-IDF value, either because the TF portion (the document itself)
has changed or the IDF portion (term statistics) has changed. This is determined
through timestamps.

The TF-IDF and TF calculations are not required by the classification algorithm
used but are provided calculated for the use of search plugins or clustering
algorithms used to bootstrap the classifier.

The process is continually executed ensuring document term statistics are updated
as quickly as possible when they become out of date. A truncated binary
exponential backoff algorithm is used to reduce load on the database, when this
procedure has no document term statistics requiring update it sleeps for an

increasing amount of time (1 second, 2 seconds, 4 seconds, 8 seconds etc) up to a
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defined maximum wait period. New work arriving will reset the delay to 1 second.
Whilst work is available, the thread sleeps for 0 seconds between each item being
updated, this reduces load on the system by encouraging the operating system to
make a context-switch allowing another thread to execute in the foreground
before the current thread is re-scheduled into the foreground again.

Again this process uses a stored procedure for efficiency, the stored procedure
updates one document term and then returns, it is called repeatedly to update all
document term statistics. It is also run as a separate thread to the term statistics
updating procedure to ensure that a constant influx of work for this procedure

would not prevent the term statistics thread from running.

Hierarchy Maintenance

SQL server triggers are used to maintain the Dept h and Li neage fields on each
node. Dept h indicates the node’s depth in the hierarchy, 0 being the root, 1 being
adjacent to the root etc. Li neage indicates the path from the node to the root,
e.g. /1/2/3/.

A SQL server trigger is simply a stored procedure (batch of T-SQL statements)
which executes when the data in the database is altered.

Hierarchical PrTFIDF Training

The hierarchical PrTFIDF training procedures are designed to be as efficient as
possible to reduce the overhead of having multiple hierarchies in the system due
to users being able to create personalised hierarchies.

In this section, training set refers to documents which have been “pinned” to the
node by the user. Node training data refers to the feature vector calculated for a
particular node given its training set. Subtree training data refers to the feature
vector calculated for a particular node given both its node training data and the
subtree training data of all of its children.

Firstly, node training data update occurs when the either the user has added or
removed documents from the training set, or a document’s term weightings have
changed:

1. The process initially identifies one node in any hierarchy requiring update
(by checking the node’s last updated timestamp, the maximum last
updated timestamp of any document in the training set and the timestamp
the node’s training set was modified).
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2. It then re-calculates node training data for documents pinned to (in the
training set for) that given node.

3. It also updates the node pins count, which is the nhumber of documents in
the training set for that node.

4. The algorithm is run repeatedly until no nodes are found requiring update.

This is a difficult process to optimise in a relational database since the size of the
feature vector is not fixed for the node’s training data or for the documents that
are pinned to the node, and additionally the update process cannot delete terms
from the node’s training data because the given term may be zero for a particular
node, but still present because it has been propagated down from the subtree.
This is optimised using a complex outer join (see Figure 24 below) between the
tables, pairing together aggregated terms from the training set for this node
(using the SQL COUNT and SUM functions over a GROUP BY clause) with terms
currently in the node training data for the node. Terms found in the training set
but not in the node training data are added to the node training data, other terms
are updated. Finally the node’s last updated timestamp is set to the current time
to indicate the node training data has changed.

7l
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DocumentID
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Figure 24 Node training data update

The outer join optimises this query because the database performs a hash join
internally between aggregated terms in pinned documents and terms currently
associated with the node. The database is highly optimised to perform this sort of
operation, and returns a list of paired terms which the application can then quickly

compare.

Additionally the use of aggregate SQL functions (COUNT and SUM functions over a
GROUP BY clause) also optimises the query, again because the database is highly
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optimised to perform this sort of operation, and also because it reduces the
amount of data transferred over the network from the database.

Secondly, subtree training data is propagated up the hierarchy.

1. Initially a query selects a node to update by comparing a given node’s
subtree training data last update timestamp, its node training data last
update timestamp and the maximum subtree training data last update
timestamp amongst all of its children. The algorithm prioritises nodes
closer to the leaves of the tree.

2. The node pins count is summed across all child nodes of the current node
to get the subtree pins count.

3. An outer join query similar to the one used for node training data is used to
pair terms in the node training data with terms aggregated from the
subtree training data of all child nodes:

a. The training data from the current node and aggregated from child
nodes of the current node becomes the subtree training data for the
current node. Terms are added to the current node’s subtree feature
vector if not present. Additionally if a term has been removed from
both this node’s node feature vector and all of its child node subtree
feature vectors it is removed completely to reduce storage space.

b. All terms propagated from all child nodes of the current node have
their uniqueness ranking updated.

4. The current node’s subtree training data last update timestamp is set to
the current time.

5. The algorithm is run repeatedly until no nodes are found requiring update.

As before, the outer join optimises this query because the database performs a
hash join internally between aggregated terms in pinned documents and terms
currently associated with the node. The database is highly optimised to perform
this sort of operation, and returns a list of paired terms which the application can
then quickly compare.

The reason for prioritising nodes closest to the leaves of the tree, is to ensure that
updates are efficiently propagated from the leaves down to the root, requiring on
average logn updates. The process is illustrated below in Figure 25, where nodes
with updated node training data are shown diagonally striped and black nodes
represent the nodes updated by the algorithm in the 6 iterations it takes to
propagate 2 updates through the entire tree (c.f. 10 if all nodes were exhaustively
updated).
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Figure 25 Hierarchical PrTFIDF subtree training propagation

Thirdly, P(Cj |w) is recalculated for all terms in the updated classifier. This is

termed the ‘posterior probability’ in the system. A changed classifier is detected by
comparing the subtree training data last update timestamp of the root node in the
hierarchy with the hierarchy’s classifier last update timestamp. The root node’s
subtree training data last update timestamp will only be updated once all changes
have been propagated through to the root node by the previous process.

When the above circumstances have been detected, P(Cj |w) is recalculated for

all vectors. Equation (25) can be rewritten as:

C.
P(ij)“Dj“

CI

P(Cj |w)— P(W|Cj)P(Cj)

") $ g0

c'ac

(36)

coc | |

The cached value of this is calculated in two phases. Firstly the numerator of the
equation is calculated, secondly all values of the numerator are summed, since
this provides the denominator. The two are then divided and stored in the
database. A value is computed across both all subtree probabilities and all

individual node probabilities. Finally the hierarchy’s classifier updated timestamp is
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set to the current time which causes all documents in the hierarchy to be re-

classified.

Note these procedures run repeatedly to process one node at a time, in addition to
the specific reasons stated in this section, the more general reasons stated in the
previous section ("Document Term Statistics Update Algorithm”) are also equally
valid. As before, a truncated binary exponential backoff algorithm is used to
control the frequency of polling the database during periods where no nodes are
found requiring update. Additionally both procedures also use transactions and

locking to ensure that the data is never left in an inconsistent state.

Hierarchical PrTFIDF Classification

The classification algorithm identifies documents requiring update by identifying
documents which not pinned to the hierarchy and are either currently not
classified, or the hierarchy has changed since the document was last classified, or

the document has changed since it was last classified.

Unfortunately because all changes to the hierarchy involve changes to the root
nodes, a change to the hierarchy requires reclassification of all non-pinned
documents, fortunately the hierarchical algorithm is efficient at classifying

documents.

Thanks to the precalculated values of P(Cj |w), the decision rule in equation (29)

can be simplified to:

H . ppipr (d’) — argmax ZP(CJ- | W)XP(W| d’) (37)

c,0c WO

The classifier performs a breadth first search to identify a path from root to leaf
most similar to the document, using the above formula and only considering
features with a uniqueness ranking of 1, indicating a feature unique to the
particular branch of the tree. The path through the tree is stored, and then the
document is compared to each node along this path again using the formula
above, but this time considering all features, to identify which node it is most
similar to. The document is then assigned to this node by the classifier.

4.4.4 Web Crawler

A web crawler plugin was provided as the default document acquisition method.
This repeatedly checks the crawl queue database for new documents to crawl, and

retrieves these.
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It limits the load on remote servers by limiting the humber of documents that can
be simultaneously downloaded, and also by limiting the rate at which documents
are downloaded. HTTP/1.1 connections to hosts are pooled by the .NET
framework, which allows subsequent requests to these hosts to reuse already
established connections.

The queue management process uses locking which would allow a cluster of web

crawlers to be operated if necessary, increasing the throughput of the system.

4.5 Summary

The finalised design conforms to the architecture set out in the high level design.
It also has the potential to fulfil all of the project goals providing the

implementation works as specified in this design section.
Some of the key achievements of this design are:

e Automatic, fault-tolerant background operation.

e Supports plugins to allow user modification of system configuration without
code changes.

e Highly optimised process for updating documents in the database and
various summaries calculated from these documents.

e Highly optimised classifier training process to reduce load of having many
hierarchies.

e Highly optimised classification process to reduce load of having many

documents and many hierarchies.
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5 Testing

5.1 Introduction

This chapter details the testing that was undertaken, and proposed further testing
to be conducted on the system.

Firstly tests were conducted to verify the functionality of the system. Secondly

tests were conducted to determine its effectiveness.

5.2 Unit testing

Thanks to the modular design of the system, it was possible to perform some tests
on each part of the system individually after it had been implemented by creating

simple test harness classes.

This provides basic tests to ensure that each component of the system is bug free

and that it functions as its specification states.

For example, the startup and shutdown of classes using threads were tested and
plugins were tested to ensure they perform correctly on predefined test data (such
as a predefined list of test terms for a filter plugin).

5.3 Integration testing

Once all components of the system were completed, an integration test was
conducted by running the application and conducting a number of test scenarios

designed to simulate both normal operation and error conditions.

This ensures that the components of the system integrate correctly together and
the system as a whole is bug free.

5.3.1 Document Acquisition Process

Tests of the document acquisition process and plugins were conducted by creating
a test acquisition class which submits a file on disk into the system. The file was a

short text file, designed to be easily checked manually.

Firstly, the summarisation process was tested by ensuring that the term frequency
given to each word in the test document was correctly set to the number of

occurrences divided by the total number of words.
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Secondly, each plugin was added to the system and tested in turn - the stopword
filter was verified to correctly remove words on the stopword list, the Porter
stemmer was verified to correctly stem words in the document, the lower case

filter was verified to correctly convert words to lower case.

Finally, the term bias averaging feature was tested by creating a test plugin to
assign a bias to particular words and the averaged term bias was compared with
the results of applying the algorithm manually.

5.3.2 Term Stats Update Process

The term statistics updating process was verified by creating documents with a
small number of terms, the calculated document frequency of each term was

calculated manually and compared with the system result.

The document term statistics updating process was also verified, by checking that
the results for a number of terms by hand. The algorithm was also tested to
ensure updates only occur when necessary by manually adjusting the timestamp
on rows to ensure that flagging a row as needing update causes only one row to

be updated, and that this row was updated only once.

5.3.3 Classifier Training Process

The classifier training process was verified by pinning a single document to a node
and running the node training data update algorithm. It was then verified that the

node’s feature vector was identical to the document’s feature vector.

The outer join used in the algorithm was verified by deleting some terms from the
document and some from the node feature vectors to ensure that three cases
were tested — where the term was present only in the node feature vector, only in
the document feature vector and present in both. After executing the algorithm
again it was verified that both feature vectors were the same.

The hierarchical propagation was then tested by creating a parent category for the
node previously tested and ensuring that the subtree feature vector was correctly
calculated by the subtree training data update algorithm. This was then further
tested by creating simulating the hierarchy shown in Figure 25 and verifying that
the algorithm operates in the predicted way.
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Additional documents were then added to the system and the above tests were re-

run with multiple documents and categories.

The training was also tested with multiple hierarchies to ensure that each
hierarchy’s training data was kept correctly isolated.

5.3.4 Classification Process

The classification process was tested initially by creating a hierarchy with a
number of levels but only one node with training data, it was verified that the
algorithm correctly recurses down the tree and classifies all the documents as part
of that node.

Next two simple documents which were identical apart from a small number of
words were put into separate nodes as training data, it was then verified that
documents identical to the training data were placed in the category which was
trained with the identical document.

The classifier was also tested to correctly classify each document exactly once per

hierarchy present.

5.3.5 Web Crawler Plugin

The web crawler plugin was tested to correctly handle and log in the database a
number of error cases such as 404 document not found, response timeouts and
disallowed MIME Types. It was also tested on cases such as HTTP redirects and

“Document not modified” responses.

“Crawling” was tested by ensuring that the web crawler correctly received (from
the decoder plugin), and subsequently queued for crawling, all links found in a

given test document.

The concurrency and rate limiters were tested to correctly block and wait in cases

where the limit had been exceeded.

5.4 Effectiveness testing

Effectiveness testing was conducted to determine how suitable the system is in

processing a collection of documents of the intended size.

Note that all tests were run with the intranet web server on the same network as

the test machine. However, due to a Microsoft SQL Server database not being
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available locally, the database connection was made via VPN from Manchester to
EDF’s network in Holland, hence all database I/O was much slower than would be
normal with the database on the same network as the test machine. Hence all test
results can be taken to be a worst-case indication and expected to improve when

run with a local database server.

Initial testing simply left the crawler running for long periods of time, and
retrieved over 20,000 documents from the departmental intranet. A number of
problems due to database locking and query optimisation were discovered due to
this, and resulting from this some of the optimisations discussed in the previous

section, for example vertically fragmenting the Ter m table were introduced.

After this, all major queries were run through the SQL server execution plan
analyser so that a large volume of data was present when checking execution
plans - the execution plan takes account of statistics generated from data, and as
such is not accurate without a realistic volume of data in the system. This
information was used to create additional indexes on columns that were found to

be reducing query performance.

Once the system performance had been tuned, formal testing was conducted. All
figures below are quoted to 3 significant figures.

5.4.1 Document Acquisition Scalability

Document acquisition effectiveness was measured as an end-to-end benchmark of
the system’s document acquisition capability. This measures how many
documents the system is able to acquire via HTTP and then process them through
MIME Type decoding, tokenisation, stopword lists, stemming and summarisation
before finally storing them in the database.

The crawler was targeted at the entire School of Computer Science website and
over three tests lasting half an hour, using a maximum of 7 concurrent HTTP
connections, 10 simultaneously processed documents and a rate limit of 150
connections per minute (the rate limit was set high to prevent it from affecting
statistics gathered), the total number of URLs crawled and the number of URLs

successfully retrieving a document was noted.

Note the difference between total URLs crawled and URLs successfully retrieving a

document is due to factors such as:
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» Invalid links resulting in 404 document not found errors.

« Redirects where the web server replies that the document has been moved
to a different URL.

« MIME-Types not understood by the set of decoder plugins available.

+ Connection timeouts.

e TCP/IP errors.

» HTTP errors.

However these are still counted since it provides an indication of the web crawler’s

performance in a real environment.

Between each test the web crawler was stopped and started again but the
database was not reset. This better simulates real conditions since the database

will run more slowly as the number of documents it contains grows.

Test1 Test2 Test3 Average

Total Processed (Documents) | 1584 | 5478 | 3483 3515

Total Successful (Documents) | 1266 | 2046 | 1611 1641

Processing Rate (Documents/s) | 0.88 3.04 | 1.935 1.953
Successful Processing Rate (Documents/s) | 0.703 | 1.137 | 0.895 | 0.912

Scaling the average URL processing rate up to the target repository sizes:

Time to crawl documents  Value

Rate (seconds/URL) | 1.953
3,000 documents projection (hours) | 1.628

30,000 documents projection (hours) | 16.275

This figure is quite acceptable since it is unlikely documents would need to be re-
indexed more than daily, and as a result the web crawler has been set not to crawl
documents more than once every 24 hours. Additionally this process would be
faster partially due to the slow test database connection and partially due to the
fact that this test only processes new documents, so none of the If-Modified-Since

optimisations are used.

5.4.2 Term Statistics Updating

Note: These two processes are not currently used by the system, this data is
made available for future plugins to use. Therefore little effort has been made to
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optimise these other than to ensure that they do not slow down system-critical
processes (at the expense of the speed of these processes).

The efficiency of the two term statistics update procedures was tested by adding
instrumentation to the system which uses the .NET Tick counter (a high resolution
timer) to time a batch of queries. The total time to execute the batch is then
divided by the number of operations to get a rate. The instrumentation was set to
log data into a .CSV file which can then be imported into Microsoft excel and the
timings analysed. To get a true indication of performance times this logging was

operated over a long period of using the system, and the rates averaged.

Term Statistics Update

Firstly the term statistics update process was examined. The speed of this process
is dependant on the number of terms in the database, i.e. the system’s
vocabulary, and the number of documents in the system. In the test system this
was 6578 words.

Over 30 updates, this took on average 6.738 x 107 seconds/document/term, with
a standard deviation of 7.987 x 10°°. A worst-case projection is shown below
assuming a vocabulary of 10,000 terms and a repository size between 3,000 and
30,000.

Time to update term statistics Value

Rate (seconds/document/term) | 6.738 x 10

10,000 terms projected rate (seconds/document) 0.674

3,000 documents projection (minutes) | 33.691

30,000 documents projection (hours) 5.615

This is quite acceptable since this is a periodic cached data update process which
does not block other processes, used only by the subsequent calculation of TF-IDF
values. Additionally this process is not currently used by any parts of the system,
and could easily be optimised further by updating a number of terms in a batch
rather than one per execution of the stored procedure. Unfortunately because the
process runs on the entire database at once it is not optimised to isolate just
newly added documents. Additionally note this process would be much faster with

a database server on the same network.
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Document Term Statistics Update
Secondly the document term statistics update process was examined. The speed
of this process is dependant on the number of documents in the database and the

number of terms that each document contains.

In the test system a document vector contained an average of 175 terms, with a
standard deviation of 256.5 terms.

In the test system over 10 iterations of updating 500 terms this took on average
0.042 seconds/term, with a standard deviation of 0.004. A worst-case projection
is shown below for average sized document vectors and a repository size between
3,000 and 30,000.

Time to update document term statistics Value

Rate (seconds/term) | 0.042

Average-sized document rate (seconds/document) | 7.312

3,000 documents projection (hours) | 6.093
30,000 documents projection (hours) | 60.934

This shows the time that the entire document collection could have its TF-IDF and
TF-LogIDF vectors. Because only newly submitted documents need processing this
figure is reasonably acceptable, however this process would definitely be a
candidate for further optimisation. Additionally note this process would be much
faster with a database server on the same network.

5.4.3 Hierarchical PrTFIDF Training

Again the following tests were conducted by adding instrumentation to the
system, set to log data into a .CSV file which was then imported into Microsoft
excel analysed.

Node Training Data
Firstly the node training data update process was examined. The speed of this
process is dependant on the average number of documents pinned to a node and

the size of each document’s vector.
Over 50 node updates, with 10 documents pinned to each node, this took on

average 1.771 seconds/node, with a standard deviation of 0.109. Assuming each
hierarchy has 40 nodes, the following projection can be made:
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Time to update node training data Value

Rate (seconds/node) | 1.771
Projected rate (seconds/hierarchy) | 70.84

Hence each reasonably-sized hierarchy would require about a minute to have its
node probabilities updated. Also note this is a worst-case figure — the operation
normally only happens on nodes which been modified, so simple updates would
take about 2 seconds.

Subtree Training Data
Secondly the subtree training data update process was examined. The speed of
this process is dependant on the depth of the hierarchy and the size of each

document’s vector.

Over 10 hierarchy updates, with a hierarchy depth of 6 nodes, this took on
average 35.479 seconds/node updated, with a standard deviation of 3.609. In the
previously assumed 40 node hierarchy the first update to establish subtree
probabilities would therefore require 23.652 minutes. However after this,
assuming an average depth of 5 nodes, updates would require 2.957 minutes.

This is a reasonable figure since hierarchy alterations are likely to happen
infrequently once established, and when an update is made the number of

calculations made is minimised.

Precalculation of posterior probabilities

Thirdly the posterior probability precalculation process was examined. The speed
of this process is dependant on the number of nodes in the hierarchy and the size
of each node’s feature vector

Over 10 precalculations, in a hierarchy of 40 nodes, this took on average 1.096
seconds per hierarchy, with a standard deviation of 0.517.

This is clearly a very acceptable figure, however some problems due to deadlock
between this process and the previous two processes was encountered.

5.4.4 Classification

Again the following tests were conducted by adding instrumentation to the
system, set to log data into a .CSV file which was then imported into Microsoft
Excel to be analysed.
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In the previously described 40 node hierarchy, 1000 document classifications took
on average 0.161 seconds/document, with a standard deviation of 0.003. For the
target repository size, the following projection can be made:

Time to classify documents  Value

Rate (seconds/hierarchy/document) | 0.161

3,000 documents projection (minutes/hierarchy) | 8.05

30,000 documents projection (hours/hierarchy) | 1.342

This shows the time required to re-classify all documents (for example after a
change to the hierarchy required a complete re-classification of all documents).
However in the case of adding a new document only 0.161 seconds would be
required per hierarchy.

5.4.5 Conclusion

The tests shown above prove that the system is capable of handling a document
repository of the target size with reasonable delays in document acquisition,
reclassification etc. However it also shows that if users are allowed to create large
numbers of hierarchies, scalability would potentially be a problem if large humbers

of users changed their hierarchies simultaneously.

It is probably reasonable to assume that for a small to medium number of
hierarchies it would be unlikely that several users would change their hierarchies
simultaneously, and if they did a delay of several minutes to hours for updates to
propagate may be acceptable.

In the case of new document submissions the number of hierarchies is unlikely to
be a problem since the document acquisition and classification process can
operate very quickly. Hence providing users make few changes to their hierarchy
once initially set up the number of hierarchies would not be a limiting factor.

5.5 Further Testing

The algorithms have been shown to perform correctly on a small scale, and have

been tested on a larger scale to find points requiring further optimisation.

However there has not been enough time to test the quality of the classification on
a large scale, since it is very time consuming to build up suitable training data for
a very large collection of documents. This is a key factor in usability of the system
and further testing should aim to build up a realistic collection of documents,
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encourage a number of users to create hierarchies and then obtain feedback from
users as to the quality of automatic classification after sufficient training. This
testing should be conducted over the long-term and ensure that the system
remains stable in the long-term and that new documents are accurately classified

with a minimum of training.

5.6 Summary

The testing has shown that the system operates correctly over a small test
collection of documents. It has also verified the scalability of the algorithm over a

large collection of documents.

However, within the timeframe available it was not possible to conduct a large-
scale evaluation over a large collection of documents with a number of users
maintaining personal hierarchies. Further testing is necessary to ensure the
system operates correctly under these circumstances and to outline any

improvements necessary.
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6 Evaluation

6.1 Introduction

This section evaluates the project in terms of its goals, and attempts to evaluate
how well each goal has been fulfilled.

6.2 Summary of Goals

In section 1.3 the goals of the project were defined to be producing a system
which fulfils the following criteria:

+ Hierarchical
 Browsable

+ Automated

+ Personalisable

The system that has been designed fulfils these goals. By testing it has been
verified that the system implementation correctly operates as designed.

Unfortunately in the personalisation step it was not possible to come up with a
solution for linking user’s personalised hierarchies to the canonical hierarchy
within the timeframe available due to the huge complexity of achieving this.
However the requirement for personalisation has been fulfilled with a less complex
method of cloning hierarchies. Moreover this less complex method is more robust
and affords the user greater control over their personal hierarchy.

Some issues were encountered during implementation and testing particularly with
respect to database locking and concurrency, but it is believed that all of these
issues have now been resolved. However large-scale tests are necessary to fully

verify this.

The plugin architecture proposed is a trade-off between extensibility and speed,
however in the case of an intranet document repository the number of documents
requiring classification is relatively small, so speed is not as much of an issue as it
would be in an internet system. Scalability testing undertaken so far has proven
that the system is more than capable of handling the specified repository sizes.
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7 Conclusion

7.1 Limitations

This section identifies the limitations of the system and highlights possible further

work.

As highlighted previously, this system makes no effort to connect changes in the
canonical hierarchy with the user’s hierarchy. Future enhancements to the system
could either inform the user of changes to the canonical hierarchy to prompt them
to change their personal hierarchy, or a system for linking the two hierarchies as
outlined in section 3.2.4 could be utilised. However a system like this presents a
number of difficult challenges.

The web crawler does not currently support the robots.txt exclusion standard
which allows the administrator of a website to prevent web crawlers from visiting
certain parts of the site. For the system to be used to crawl any websites not
controlled by the administrator of the system, the robots.txt exclusion standard
ideally should be supported.

From the testing, some of the processes involved in the system have been shown
to be slow. A lot of this is due workarounds to reduce concurrency in the database
backend. Most commercial web crawlers such as Google utilise custom-built data
storage which is optimised for the operations performed. The best possible
improvement of this system to increase the speed of the various processes would
probably be to replace the backend database with a custom-built data storage
system.

7.2 Extensions

One of the major extensions to the system noted previously would be the use of a
clustering algorithm to bootstrap the initial hierarchy. The major problem with
bootstrapping in this way is the danger of overfitting. This is where the classifier is
fitted to the training data in such a way that it performs perfectly over the training

data, but is unable to classify any new examples correctly.

Additionally there are a number of additional extensions possible in terms of
plugins, for example collecting bigram collocations, the creation of a WordNet
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stemming plugin, or the creation of a WordNet plugin to add hypernyms to the

terms contained in a document.

Peng and Choi [32] also propose a solution for automatically detecting the need
for a new category upon the arrival of documents significantly different to the
categories existing in the hierarchy, this would possibly be another useful

extension to the project to reduce requirements for hierarchy maintenance.

Finally, it is interesting to note that a browsing-based system such as this has the
effect of increasing the novelty ratio (equation (4) in section 2.2.2.2) for a user
trying to find information compared with a keyword search since documents are
found by concept rather than by a query. A useful extension of the system would
be to incorporate a keyword search, using the TF-IDF data already present in the
database. Results retrieved could allow the user to either browse into the category
containing the result, or jump directly to the document.

7.3 Summary of achievements

A system has been constructed and partially tested which fulfils the initial goals
set. The system builds upon existing research, but implements the algorithms in a
highly optimised and relational database specific manner to maximise the
efficiency of the system. It provides for user-personalisation through the cloning

and subsequent personalisation of hierarchies.

The system supports plugins for future administrators to be able to modify the
operation of the system and extend the system without modifying the code of the
system itself.

Through testing the system has been shown to be scalable enough to cope with

the sizes of document repository targeted. The system should be capable of being
deployed commercially after a phase of further detailed testing.
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Implementation Details

1.1 Introduction

This section provides an overview of all the major classes in the system

implementation:

» Firstly, the system framework is discussed. This is the set of supporting
classes which make up the core components of the system and connect the
plugins together.

« Secondly, the set of plugins which have been provided with the initial
implementation of the system are discussed.

The system has been named “Dagama” and all classes are inside a similarly

named namespace.

For a more detailed account of all classes and the methods, properties and
variables each provide, NDoc [39] format documentation generated from XML

comments is provided at http://www.base6.com/dagama/.

1.2 System Framework

This section provides a summary of all major classes in the system framework

implementation and their function.
Acquisition Management (Dagama.Acquire)

Dagama. Acqui re. Acqui r eManager
This class manages the entire acquisition and document summarisation
process. It implements the singleton design pattern. On startup it initialises
the document processor pool to prepare for the processing of documents and
then the acquisition manager to begin acquiring documents. On shutdown it
stops both of these.

Dagana. Acqui r e. DocPr ocessor Pool
This class manages the pool of document processing threads and implements
the I Acqui re interface. On startup it creates a ConcurrencyLi m ter to limit
the number of concurrent documents being processed and calls the static
G obal Init function of the DocProcessor class. On shutdown it calls the

d obal Fr ee function of the DocPr ocessor class.
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Upon notification that a document has been updated or deleted, a new slot is
requested from the ConcurrencyLi miter and once the slot has been obtained
it creates a new DocProcessor object to process the document and queues its

processing function for execution on the Thr eadPool .

.NET uses a database connection pool which reduces the need to repeatedly
disconnect and reconnect to the database, the idea being instead of being
closed a connection is returned to the pool after use, and a new connection will
be supplied from the pool instead of making another connection to the
database. During testing the application was exhausting the connection pool
causing errors, so this class was re-engineered to use a fixed array of Thr ead
objects (instead of using the ThreadPool ) each of which each hold a
permanent database connection. This is less efficient but appeared to reduce
the problem. Later it was discovered that this problem is actually caused by a
bug in Microsoft Visual Studio .NET’'s debugger [38], and the design was
reverted to use the Thr eadPool again.

Configuration Settings

The maximum number of documents to

MaxConcur r ent Subni ssi ons | process concurrently before forcing new

submissions to queue.

Dagama. Acqui r e. DocPr ocessor
This class manages the processing of an individual document. It holds a global
(static) instance of the Decoder Manager, Fil t er Manager, Tokeni ser Manager
and Docurnent Summari ser. G obal I nit and @ obal Free functions initialise and

destroy these classes on startup/shutdown.

An Updat eDocunent Cal | back function is provided to process new documents
(which are decoded, tokenised, filtered and summarised before being passed
to the DAL to update in the database). A Del et eDocunent Cal | back function is

also provided to pass a document to the DAL to be deleted from the database.
Acquisition Plugins (Dagama.Acquire.AcquistionPlugin)

Dagama. Acqui re. Acqui si ti onPl ugi n. Acqui si ti onManager
This class manages all acquisition plugins. On startup it sends a start message

to all registered plugins and on shutdown it sends a shutdown message to all
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running plugins. Each plugin is also provided with an
Dagana. Acqui re. | Acqui re interface which provides methods to submit and

remove documents from the system.

Configuration Settings

The fully qualified name of an acquisition

Regi st er edPl ugi n[ 0. . n]
plugin to be instantiated by the framework.

Dagama. Acqui re. Acqui si tionPl ugin. |l Acquire
Acquisition system interface. Provides methods to submit and remove

documents from the system.

Dagama. Acqui re. Acqui si tionPl ugi n. I Acqui sitionPl ugin
Interface which all document acquisition plugins must implement. Has

start/stop methods to start and stop the plugin.
Decoder Plugins (Dagama.Acquire.DecoderPlugin)

Dagama. Acqui r e. Decoder Pl ugi n. Decoder Manager
This class manages all decoder plugins. On startup it instantiates all registered
plugins and on shutdown it destroys all registered plugins.

Has a decode document method which accepts a raw document and an
| Tokeni ser object, and searches registered plugins for a plugin capable of
decoding it and returns the decoded array of terms. Throws an exception if no

plugin was found.

The decoder plugin is also supplied with a link callback function passed from
the acquisition plugin. This allows the acquisition plugin to be notified of new
URIs discovered in the documents (for example in the case of a web crawler

this allows newly discovered documents to be crawled).

Configuration Settings

The fully qualified name of a decoder plugin

Regi st eredPl ugi n[ 0. . n]
to be instantiated by the framework.

Dagama. Acqui r e. Decoder Pl ugi n. | Decoder Pl ugi n
Interface which all decoder plugins must implement. Provides two methods,

one which returns a Boolean specifying whether a stated MIME Type can be
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decoded by this plugin, one which performs decoding of a document given a
document and an | Tokeni ser object.

Filter Plugins (Dagama.Acquire.FilterPlugin)

Dagama. Acqui re. Fi l ter Pl ugi n. Fi | t er Manager

This class manages the chain of filter plugins. On startup it instantiates all

registered plugins and on shutdown it destroys all registered plugins.

Has a filter method which accepts the array of decoded tokens and passes it to
each filter plugin in turn for modification. The array is actually an | TokenLi st
object, ensuring that only a reference to the array is passed around (as

opposed to passing copies around) in order to reduce memory requirements.

Configuration Settings

Name Value

The fully qualified name of a filter plugin to
be instantiated by the framework.

Regi st eredPl ugi n[ 0. . n] | Documents are passed to each plugin in
order from Regi st er edPl ugi nO to

Regi st er edPI ugi nN.

Dagama. Acquire. FilterPlugin. I FilterPlugin

Interface which all filter plugins must implement. Has a filter method which
accepts an | TokenLi st interface through which to enumerate and modify

terms.

Document Summariser (Dagama.Acquire.Summariser)

Dagama. Acqui re. Summar i ser . Docunment Summar i ser

Converts an array of tokens into a “bag of words” model list of tokens and
occurrences. This is achieved by using a quick sort algorithm to sort the list
alphabetically and then stepping through the list counting occurrences of each
term and averaging term bias.

Tokeniser Plugin (Dagama.Acquire.TokeniserPlugin)

Dagama. Acqui r e. Tokeni ser Pl ugi n. Tokeni ser Manager
This class manages the chain of tokeniser plugins. Tokeniser plugins use the

factory design pattern (to enable each individual tokeniser to maintain state
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whilst tokenising a given document), and on startup this class instantiates the

registered tokeniser factory and on shutdown it destroys the tokeniser factory.

Has a Get Tokeni ser method which obtains a new | Tokeni ser object from the

registered factory.

Configuration Settings

The fully qualified name of the tokeniser
Regi steredPl ugin | factory plugin to be instantiated by the

framework.

Dagama. Acqui re. Tokeni ser Pl ugi n. | Tokeni ser Factory
Interface which all tokeniser factory plugins must implement. This has a

Get Tokeni ser method which must return a new | Tokeni ser object.

Dagama. Acqui re. Tokeni ser Pl ugi n. | Tokeni ser
Interface which all tokenisers must implement. This has a | sTokenBoundary

method which accepts a character and returns True if it is a token boundary.

Acquisition Data Types (Dagama.Acquire.Types)

Provides a humber of supporting data type classes, for example | TokenLi st .

Classifier (Dagama.Classifier)

Dagama. O assi fier. C assifierTrai nUpdat eNodePr obability
Derived from Cont i nuousThr eadBase, causes the DAL to periodically check for

node training vectors requiring update.

Configuration Settings

Name Value

Maximum delay for the

Cont i nuousThr eadBase truncated binary
MaxNoUpdat eS|l eepDel aySeconds
exponential backoff algorithm to wait if no

training vectors need updating.

Dagama. O assi fier. C assifi er Tr ai nUpdat eSubt r eeProbabi lity
Derived from Cont i nuousThr eadBase, causes the DAL to periodically check for

subtree training vectors requiring update.

Configuration Settings
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Name Value

Maximum delay for the

Cont i nuousThr eadBase truncated binary
MaxNoUpdat eS|l eepDel aySeconds
exponential backoff algorithm to wait if no

training vectors need updating.

Dagama. O assi fier. C assi fyCal cPosteriorProbabilities
Derived from Cont i nuousThr eadBase, causes the DAL to periodically check for

hierarchies requiring their precalculated posterior probabilities to be updated.

Configuration Settings

Name Value

Maximum delay for the

Cont i nuousThr eadBase truncated binary
MaxNoUpdat eS|l eepDel aySeconds

exponential backoff algorithm to wait if no

documents need classifying.

Dagama. d assifier.C assifierdassify
Derived from Cont i nuousThr eadBase, causes the DAL to periodically check for

documents requiring classification.

Configuration Settings

Name Value

Maximum delay for the

Cont i nuousThr eadBase truncated binary
MaxNoUpdat eS|l eepDel aySeconds
exponential backoff algorithm to wait if no

documents need classifying.

Dagama Service (Dagama.Service)

Dagama. Ser vi ce. DagamaSer vi ce
This is the framework’s startup class. It is written as a Microsoft Windows
system service which allows it to run in the background on any windows

machine and to be started and stopped automatically.
The class simply communicates windows start/stop requests to

Dagana. Acqui r e. Acqui r eManager , Dagama. St at s. St at sManager and

Dagama. d assi fier. C assifi er Manager .
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Statistics Updater (Dagama.Stats)

Dagama. St at s. Ter n5t at sUpdat er Thr ead
Derived from Peri odi cThr eadBase, causes the DAL to periodically re-calculate

both the document frequency and inverse document frequency of known

terms.

Configuration Settings

How often to update the term statistics in

Updat el nt erval M nut es
minutes.

Dagama. St at s. Docurnent Ter nSt at sUpdat er Thr ead
Derived from Cont i nuousThr eadBase, causes the DAL to periodically check for

document term statistics (TF-IDF and TF-LogIDF) requiring update.

Configuration Settings

Name Value

Maximum delay for the

Cont i nuousThr eadBase truncated binary
MaxNoUpdat eS|l eepDel aySeconds

exponential backoff algorithm to wait if no

document term statistics need updating.

Thread Management (Dagama.Threading)

Dagama. Thr eadi ng. ConcurrencyLi m ter
This class supports the limiting of the number threads executing a particular
task. This is achieved by having a counter which is checked and
incremented/decremented inside a nmut ex block (to ensure only one thread can
access the counter at a time). If the maximum number of slots are currently in
use, the nmut ex is released and then the thread blocks on an Aut oReset Event

object.

When a slot is freed, the Aut oReset Event object is signalled, releasing exactly
one waiting thread which then fills the slot. The advantage of this is it
maximises efficiency since no timers are required to repeatedly poll for a free

slot, the thread simply sleeps until one being freed wakes it.

This class also creates performance monitors to show the current number of

concurrent tasks executing and the average duration and rate of execution.
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This allows the current system activity to be currently viewed, for example the

number of web pages the web crawler is currently downloading or the number

of documents currently being processed.
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Figure 26 Concurrency limiter performance counters

Dagama. Thr eadi ng. Cont i nuousThr eadBase

Derives from Thr eadBase. Abstract base class for a thread which is designed to
repeatedly execute a DoWirk function (which is overridden). The DoWbrk
function returns true if work was found, false if it was not. If false is returned,
the thread sleeps using a truncated binary exponential back off algorithm, so
initially it would sleep for 1 second, then 2 seconds, then 4, then 8, then 16
etc up to a defined maximum. The purpose of this is to reduce the load if the
task that is continuously being executed is not doing anything (For example
polling for documents to be classified but none are being added).

Dagama. Thr eadi ng. Peri odi cThr eadBase
Derives from Thr eadBase. Abstract base class for a thread which is designed to
execute a DoWor k function every n seconds. Rather than sleeping for n seconds
after the DoWwor k function has been executed, the duration which the DoWr k
function took to execute is calculated, and the thread sleeps n - duration. This
ensures that if the DoWwor k function is taking longer than the specified duration

to execute it will be run continuously.

Dagama. Thr eadi ng. RateLi m ter
This class is designed to limit the rate at which a task is being executed. It

achieves this by monitoring the number of tasks executed over a given
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window, for example enforcing a maximum of 5 tasks/minute averaged over

the last 10 minutes.

If the current rate is over the acceptable maximum, the thread sleeps until the
next logged task run is due to be expired (i.e. has become older than the
current time minus the window length). The average over data currently within

the window is recomputed within a nut ex block for thread safety.

Dagana. Thr eadi ng. Thr eadBase
Abstract base thread class, provides an abstract Run function to be overridden,
also Start Thread/St opThread functions which manage the startup/shutdown
of the thread and a KeepRunni ng function for the Run function to poll to see
whether it should shut down (calling St opThr ead also causes the thread to be
awoken if it is sleeping, if it does not shut down within 5 minutes it is

terminated).

Configuration Manager (Dagama.Configuration)
Provides a Confi gur at i onManager class which allows configuration settings to be

loaded from the XML application config file.

Data Access Layer (Dagama.Data)

The Data Access Layer separates data access code from the main application.

Dagama. Dat a. Dat aFact or yManager
This class which implements the singleton design pattern and provides one

method to return the registered data factory object.

Configuration Settings

The data factory plugin to instantiate on

Regi st eredPl ugi n
startup.

Data Access Layer Interfaces (Dagama.Data.Interfaces)

Provides one factory interface and a number of data service interfaces. Each

database-specific implementation must implement all of these.
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SQL Server Data Access Components (Dagama.Data.Sql)

Dagama. Dat a. Sql . Sql O assifier
Invokes stored procedures to update the classifier training data. One stored
procedure updates node training data on nodes which have either had their
training set altered, or where documents in the training set have changed.
When training data is updated in this way a datestamp is set to the current
time. The other stored procedure checks for nodes where this datestamp is
more recent than the date the node’s probability was updated. It processes
nodes closest to the root of the tree first and recurses down to the leaves of
the tree calculating the subtree probability and node counts using the
hierarchical PrTFIDF algorithm.

Also contains a procedure to classify documents.

Dagana. Dat a. Sgl . Sgl Conn

Manages database connections.

Configuration Settings

ConnectionString | The SQL Server connection string to use.

Dagama. Dat a. Sql . Sql Docunent

Provides methods to add, delete and update documents in the database.

Dagama. Dat a. Sql . Sgl St at sUpdat e
Provides a method to invoke a stored procedure update term statistics, namely
document frequency and inverse document frequency. If these values change
from the previously computed values a datestamp is updated which causes the

document’s term weightings to be recomputed.

A second method invokes the stored procedure to update the document’s term
weightings in the case that the term’s document frequency has been changed
by the first method or the term’s term frequency has changed in the

document.

Dagana. Dat a. Sql . Sql St opWor ds

Provides a method to retrieve a list of stopwords from the database.

Dagana. Dat a. Sql . Sgql WebCr awl er Docunent
Provides methods to add URLs and update the status of URLs in the web

crawler queue. Also provides a method to dequeue a URL for crawling. This
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method uses SQL Server locking to prevent updates whilst the status of the
URL is set to “in progress”. The row is then unlocked but any other threads
executing this method will ignore rows marked as “in progress”, allowing web

crawlers to be run on a cluster of machines.

Data Access Layer Types (Dagama.Data.Types)

Provides supporting abstract data representations for use in communication
between the data access layer and the application.

Logging (Dagama.Logging)
Provides a common library for the logging of all exceptions and messages,

complete with source information and a severity level.

1.3 System Plugins

The following plugins have been supplied with the initial implementation of the
system.

Dagama. Acqui re. Acqui si tionPl ugi n. Test Acqui re. Test Acqui re
Test acquire plugin, on startup loads a file from disk and submits it into the
system.

Dagama. Acqui re. Acqui si tionPl ugi n. WebCr awl er . WebCr awl er
Web crawler plugin, crawls documents using asynchronous I/O and the

Thr eadPool . Extends Cont i nuousThr eadBase.

The web crawler uses a ConcurrencyLimter and a RatelLi m ter to limit load
placed on remote servers. It maximises network efficiency by discarding
unsuitable MIME-Types after the HTTP header is received but before the
response is sent, also uses HTTP/1.1 connection re-use to limit overhead of

reconnecting to the same server for each request.

It uses the HTTP/1.1 If-Modified-Since: header to only download documents
which have been updated. Also uses regular expressions to limit which URIs

are crawled.

All URIs have their query string and bookmark information stripped, ensuring
the crawler does not get stuck in any infinite loops caused by CGI scripts. The
crawler does not obey the robots exclusion protocol since it is designed for
intranet use, but this could easily be added later.
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The web crawler handles redirects by marking the original URI as processed

James Furness

and then queuing the redirect URI in the database for crawling.

Configuration Settings

Name Value

Ht t pAccept Header

HTTP Accept: header to be sent to

remote servers.

Ht t pRef er er Header

HTTP Referer: (sic.) header to be

sent to remote servers.

Ht t pFr onHeader

HTTP From: header to be sent to

remote servers.

Request Ti meout Seconds

HTTP request timeout in seconds.

Rat eMbni t or W ndowM nut es

Rat eLi mi t er window in minutes.

Rat eMbni t or MaxConnect i onsPer M nut e

Rat eLi nmiter maximum allowed

number of connections/minute.

MaxConcur r ent Connecti ons

ConcurrencyLi miter maximum
number of simultaneous HTTP

connections.

Max Enmpt yQueueS| eepDel aySeconds

Maximum delay for the

Cont i nuousThr eadBase truncated
binary exponential backoff
algorithm to wait if no web pages

are queued for crawling.

MaxAcqui r eFai | ur esBef or eRenove

Maximum number of failures to
acquire a document before it is

removed from the database.

Al onedURI [ 0. . n]

List of regular expressions
representing URIs which are
allowed to crawl, anything not in
this list will be ignored.

Al | onedM METYpe[ 0. . n]

List of regular expressions
representing MIME types which are
allowed to crawl, anything not in
this list will be ignored.

Dagama. Acqui r e. Decoder Pl ugi n. Text Pl ai n. Text Pl ai n

Decodes text/plain documents using the system tokeniser.
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Dagama. Acqui r e. Decoder Pl ugi n. Text HTM.. Text HTML
Decodes text/html documents using the system tokeniser. Uses regular
expressions to strip text out of the HTML document, and to strip all links,
which are reported back to the acquisition plugin.

Dagama. Acqui re. Fi |l ter Pl ugi n. HyphenFi | t er. HyphenFi | t er
Filters out words consisting entirely of hyphens (since the tokeniser counts
hyphens to be part of a word).

Dagama. Acqui re. Fi l ter Pl ugi n. Lower CaseFi |l ter. Lower CaseFil ter

Converts all terms to lower case.

Dagama. Acquire. FilterPl ugin. PorterStemmerFilter. PorterStenmerFilter
Replaces all terms with Porter-stemmed versions (hyphenated words have
each part separated by hyphens stemmed individually).

Dagama. Acqui re. FilterPl ugi n. StopWordfilter. StopWwrdfilter
Holds a sorted stopword list in memory, uses binary search to compare each
term in the document with this list and removes words matching a word on the

stoplist.

Dagana. Acqui r e. Tokeni ser Pl ugi n. Basi cTokeni ser Fact ory

Creates Basi cTokeni ser objects.

Dagama. Acqui re. Tokeni ser Pl ugi n. Basi cTokeni ser
Ignores context information, simply treats any character not matching [\-A-
Za-z0-9] (letters, numbers and *-') to be a token boundary.
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A novel system is proposed for the indexing, searching and browsing of an intranet
document repository for use as part of a corporate extranet. The system allows
users to browse a hierarchically organised collection of documents. The hierarchy is
automatically maintained by the system after a minimum of training. Users
additionally have the option to personalise the hierarchy in order to organise the
documents in any way they see fit. This document presents an overview of the

design of the system and the reasons for the various design choices.

The system has been implemented and initial tests on the system have been
conducted which show that the system would comfortably be able to handle a
repository sized between 3,000 and 30,000 documents.




